Topological quantum error correction: a friendly introduction

Sam Burdick

α	alpha
β	beta
δ	delta
Γ, γ	gamma
Θ, θ	theta
ϕ, φ	phi
ψ	psi
σ	sigma
Ω, ω	omega
$\|\psi\rangle$	physical qubit
$\|\psi \phi\rangle=\|\psi\rangle\|\phi\rangle$	qubit concatenation
$\left\|\psi_{L}\right\rangle$	logical qubit
$\langle\phi \mid \psi\rangle$	inner product
$\binom{\alpha}{\beta}$	two-dimensional state vector
$C(n, k)$	binomial coefficient: " n choose $k "$
ϵ	set membership
\otimes	Kronecker product
$\}$	empty set
\mathbb{Z}	integers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
i	imaginary unit $\sqrt{-1}$
Σ	discrete summation
X	Riemann integral
\int_{a}^{b}	identity matrix
I	Pauli matrices
X, Z	Hadamard gate
H	set cardinality
$\|\cdot\|$	Cartesian product; dimensionality
\times	boundary of the point set A
∂A	union, intersection of sets
\cup, \cap	

Version 0.2

The musical notation and quantum circuit example were taken respectively from the tutorials [1] and [2].
The images in this work were generated by the author using AI, unless specified otherwise.
The fault tolerance illustration in section 10 was drawn by David Chiu.
© 2024 Samuel M. Burdick. All rights reserved.
The content of this work, including this disclaimer, is subject to change at any time without prior notice. The author makes no guarantees regarding the accuracy, reliability, or completeness of the information provided.

Printed in the United States of America.

For the computer science community.

I graduated from the library when I was twenty-seven. I discovered that the library is the real school.
—Ray Bradbury

Contents

1 Preface 8
2 To the student 9
3 To the instructor 9
4 Acknowledgements 9
5 Contribution guidelines 11
6 Introduction 12
7 Mathematical preliminaries 13
7.1 Set theory 13
7.1.1 Unions and intersections 13
7.1.2 Cartesian products 13
7.2 Linear algebra 14
7.2.1 Matrices 14
7.2.2 Vectors 15
7.2.3 Vector spaces 16
7.2.4 Basis vectors 16
7.3 Probability theory 17
7.4 The field of numbers 19
7.5 Complex variables 21
8 Qubits defined 24
8.1 Superposition and basis vectors 24
8.2 Eigenvalues and eigenstates 25
9 Algebraic topology 26
9.1 Groups 26
9.2 Generating subgroups 27
9.3 Group stabilizers 27
9.4 Gaussian lattices 27
9.5 Equivalence classes 28
9.6 Topological braids 29
10 Quantum gates and circuits 31
10.1 Unitary matrices 31
10.2 Hadamard (H) 32
10.3 Controlled-X (CX) 33
10.4 Controlled-Z (CZ) 35
10.5 Measurement 36
10.6 Reset 36
$10.7 T$ and S 37
10.8 Toffoli 38
10.9 Clifford gates and universality 39
10.10Quantum circuits 40
10.10.1 The Bell pair 41
11 Fault-tolerant computing 43
11.1 Formalism 43
11.2 The CAP theorem 43
11.3 Exercises 44
12 Stabilizers 45
12.1 Formalism 45
12.2 The controlled- A gate (CA) 45
12.3 The X stabilizer 46
12.4 The Z stabilizer 47
12.5 Exercises 48
13 Lattice surgery 49
13.1 The planar code 49
13.2 Logical qubits 50
13.3 Logical operators 50
13.4 Operator movement 51
13.5 Logical CX 51
13.6 Exercises 52
14 Syndrome analysis 53
14.1 Pauli frames 53
14.2 Minimum weight perfect matching (MWPM) 54
14.2.1 Detection events 54
14.2.2 The algorithm 54
14.2.3 Putting it all together 55
14.2.4 Implementation concerns 55
14.3 Exercises 55
15 Software applications 56
15.1 Stim 56
15.2 TQEC. app 56
16 Further reading 58
17 Works cited 59

1 Preface

Contemporary quantum computer hardware is notorious for being error－ prone．To enable its scalability and general accessibility，error correction techniques must be applied；one such method，known as topological quantum error correction（TQEC），reliably detects minute hardware errors．This work offers an informal theoretical introduction to TQEC，followed by a discussion of classical software that supports it．

This work targets readers with an upper－undergraduate or graduate rank in computer science，and assumes background familiarity with high school algebra，geometry and trigonometry，summation notation，asymptotic anal－ ysis（big－O），and graph algorithms．You may think this work as a toolbox that you can reopen at any point in your quantum error correction work； reading it all the way through in one sitting would be rather tedious．

The only way to truly add a tool to your kit is to practice using it．You will find various exercises strewn about this text，with approximate degrees of spiciness indicated：
－ぶ）Immediately clear to a careful reader．
－ぶ searching through other parts of the text．
－

Major results，which may or may not be proven in this text，are demar－ cated as theorems；intermediate results that are important in their own right are called lemmas．

To eat well，I always disagree with critics who say that all restau－ rants should be fine dining．You can get a Michelin star if you serve the best hamburger in the world．
—David Chang（2020）

2 To the student

This work is written for you: a computer science student interested in quantum error correction, and willing to learn a little math along the way. Due to the current job landscape, it's a somewhat common misconception that a physics degree is a prerequisite to quantum computing. The reality is that you do not need one to contribute to this burgeoning field.

The goal of this work is to enable such contributions. Think of it as a map: mathematically defined, and aiming to be useful; since the terrain is not the map; the author intends to regularly update this work to the best of their ability.

If you've ever written two nested for loops that together add up lists of numbers of length m, for $1 \leq m \leq n$, then at some point you may have been shown the mathematical way of explaining it:

$$
\begin{equation*}
\sum_{k=0}^{n} k=O\left(n^{2}\right) \tag{1}
\end{equation*}
$$

Most likely, the math you learned beforehand was meant to teach you the fundamentals of calculus, which only uses such machinery in more advanced contexts. I'd like to assure you that the complexity of the mathematical statements herein are no more complex than equation and have a similar flavor. In conclusion, this is not a quantum mechanics text; it is a computer science text through and through.

3 To the instructor

It is the author's hope that this work provides a "boots on the ground" perspective into the realm of topological quantum error correction, and quantum computing in general. The upper-rank undergraduate or graduate student new to quantum computing should benefit from the clear and concise language used in this work.

4 Acknowledgements

The author would like to thank Unitary Fund, for their generous support of the TQEC open-source project; Austin Fowler, for his mentorship, and
for drawing many of the figures used in this work; and those who have contributed to TQEC. app.

This is only possible when there are no global topological obstructions to this identification.
-Mina Aganagić, Costin Popescu, and John H. Schwarz [3]
An author cannot of course remain unaffected by the sum of his experiences...
—J. R. R. Tolkien (1954) [4]
It is our chief aim to entertain, then inform...

- Card Walker (1982)

Another good debugging practice is to keep a record of every mistake made. Even though this will probably be quite embarrassing, such information is invaluable to anyone doing research on the debugging problem, and it will also help you learn how to reduce the number of future errors.
-Donald Knuth (1997) [5]

5 Contribution guidelines

This is a work by one person, but could not have been possible without many; to list them all would simply be impossible. Moreover, as time goes on, I suppose members of the community will offer error corrections of their own. Maintaining this work as an open-source project is simply not possible, due to copyright concerns; however, to acknowledge any errors found in the work, one TQECent will be issued as payment for correctly identifying an error. Technical authors frequently offer bounties in the form of handwritten checks, or an equivalent exchange. To be more environmentally friendly, secure, and open to all, this work proposes a new cryptocurrency, TQECoin; a single block of which shall be more than ten times less carbon intensive than mailing a handwritten check via USPS.

Back-of-the napkin calculations reveal that the marginal carbon footprint of writing and mailing a check in the United States is 20 g of CO_{2}. Assume that an Intel i7 8th gen/Nvidia RTX 2060 Super based computer can mine a single TQECoin block in 24 hours and performs no other tasks. This process uses roughly 2 g of CO_{2}, making it viable to produce 100 TQECents at the prescribed rate. The blockchain or any other data needn't be stored on a third-party service. Out of fairness, I cannot offer any other form of reward; if you would like to contribute without holding any cryptocurrency yourself; I will keep your cent and not sell it. All contributions will be listed on my website ${ }^{1}$ for quick reference.

Happy hunting!
-S. M. B.

Harambee ("Let us all pull together")
-National motto of Kenya
Everything is difficult in the beginning. -Chinese proverb

[^0]
6 Introduction

Intense hardware error rates severely limit the practicality of quantum computers [6]. Research labs such as Google Quantum AI have made significant strides towards error tolerance in recent years, having produced a logical qubit prototype in 2023. However, Google does not expect to have a single long-lived logical qubit, comprising on the order of 1000 physical qubits, until 2025 at the earliest [7]. While these figures may sound discouraging, several promising avenues for correcting qubit errors remain; this work discusses improved noise resilience through topological quantum error correction (TQEC).

This work is organized as follows. We begin by introducing the key mathematical concepts for understanding TQEC, such as Pauli errors, stabilizers, and planar codes. ${ }^{2}$ Next, we discuss syndrome analysis, a set of classical algorithms used to fully implement the error model. To the author's knowledge, this work is the first survey of TQEC written with the chief aim of assisting those with a computer science background interested in the domain of quantum error correction. It is our intention to develop a practical and ground-up understanding of the planar code.

The initial sections of this work provide some background for readers interested in quantum error correction, but are perhaps unfamiliar with the quantum computing notation, or in need of a mathematical refresher. For a deeper look into the basics, a free Coursera course is under development [8], and two helpful textbooks are [9] and [10]. For a deeper dive into the field of quantum error correction, see [11]. It is the author's hope that this work will serve as a learning tool for those interested in contributing to TQEC through further research and development.

[^1]
7 Mathematical preliminaries

I strongly recommend reviewing the table of contents and circling the names of sections that are unfamiliar to you, and focusing on those.

7.1 Set theory

The most basic mathematical object is called a set, which is simply a collection of distinct objects. For example,

$$
\begin{equation*}
\{\triangle, 42, e\} \tag{2}
\end{equation*}
$$

is a set. It's not a terribly useful one. The cardinality of a set, denoted $|\cdot|$,
The most useful set of all is possibly \mathbb{Z}, which are commonly known as "whole numbers" but are better known within the world of coding as integers:

$$
\begin{equation*}
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \tag{3}
\end{equation*}
$$

Exercise 1. $\mathcal{B}\}$ Show that the natural numbers $\{1,2,3 \ldots\}=\{|a|: a \in \mathbb{Z}\}$.
Another surprisingly useful set is the empty set $\}$ (sometimes denoted $\varnothing)$, which contains no elements, that is, $|\} \mid=0$.

7.1.1 Unions and intersections

The union of two sets is defined as:

$$
\begin{equation*}
A \bigcup B=\{a: a \in A \text { or } a \in B\} . \tag{4}
\end{equation*}
$$

The intersection is

$$
\begin{equation*}
A \bigcap B=\{a: a \in B \text { and } a \in B\} \tag{5}
\end{equation*}
$$

Exercise 2. \mathcal{B} (Addition principle) Show that if $A \cap B=\{ \}$, then

$$
\begin{equation*}
|A \bigcup B|=|A|+|B| . \tag{6}
\end{equation*}
$$

7.1.2 Cartesian products

The Cartesian product of two sets A and $S B$ is defined as

$$
\begin{equation*}
A \times B=\left\{(a, b): a \in S_{1}, b \in S_{2}\right\} . \tag{7}
\end{equation*}
$$

Sometimes, we denote $A \times A$ as A^{2}.
Exercise 3. \mathcal{B} Show that $|A \times B|=|A||B|$.

7.2 Linear algebra

We have tried to make this text as helpful as possible with this transition. Every definition is stated carefully, set apart from the text.
—Robert Beezer (2012) [12]

7.2.1 Matrices

Matrices are multi-dimensional arrays of numbers. For our purposes we shall focus on 2 x 2 matrices, written as:

$$
A=\left(\begin{array}{ll}
a & b \tag{8}\\
c & d
\end{array}\right) .
$$

You can multiply two matrices together, using the formula

$$
A_{1} A_{2}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right) .
$$

Importantly, for any matrices A and B, you should expect that $A B \neq B A$; they are non-commutative with respect to multiplication. Notably, A and B can also be anti-commutative, which would mean $A B=-B A$. We'll now defy your expectations by showing off a widely-used matrix known as the identity matrix:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Multiplying any matrix A by I produces A :

$$
A I=I A=A
$$

Exercise 4. $3 \mathcal{3}$ Compute $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{5}{6}$.
Exercise 5. \mathcal{B} The inverse of a 2x2 matrix is defined as

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \tag{9}\\
-c & a
\end{array}\right)
$$

Show that $A A^{-1}=I$.

Exercise 6. 3 Show that

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

rotates a vector in \mathbb{R}^{2} by θ counterclockwise.
 ing applications, and denoted here as (..), is the component-wise product of two matrices, such that $(A B)_{i, j}=(A)_{i, j}(B)_{i, j}$ for all valid i and j. Write an equation that explicitly defines the elements of $(A B)$.

It is the world that has been pulled over your eyes to blind you from the truth...
-Morpheus, The Matrix (1999)

7.2.2 Vectors

A vector is a one-dimensional array. We focus on vectors with two numeric entries α and β, denoted

$$
\begin{equation*}
|\psi\rangle=\binom{\alpha}{\beta} . \tag{10}
\end{equation*}
$$

The symbol $|\cdot\rangle$ is known as a ket in quantum computing literature. We can multiply a vector by a numeric value λ like so:

$$
\begin{equation*}
\lambda|\psi\rangle=\lambda\binom{\alpha}{\beta}=\binom{\lambda \alpha}{\lambda \beta} \tag{11}
\end{equation*}
$$

Finally, we can multiply a matrix times a vector, which gives back a new vector:

$$
\left(\begin{array}{ll}
a & b \tag{12}\\
c & d
\end{array}\right)\binom{\alpha}{\beta}=\binom{a \alpha+b \beta}{c \alpha+d \beta}
$$

Exercise 8. \mathcal{B} Compute

$$
\left(\begin{array}{ll}
2 & 3 \\
5 & 6
\end{array}\right)\binom{7}{9}
$$

7.2.3 Vector spaces

This is formally defined as a set X that's associated with a function f : $X \rightarrow X$ such that f is linear, meaning $f(a x)=a f(x)$ for all scalars, and $f(x+y)=f(x)+f(y)$, for all $x, y \in X$. For example, the set of all 2 x 2 matrices equipped with matrix addition is a vector space.

Exercise 9. vector space.

7.2.4 Basis vectors

If any set of state vectors V can be written in terms of a linear summation of elements of a set of vectors \mathcal{B}, then we say that \mathcal{B} is a basis of, or spans, V. For example, the Euclidean basis

$$
\left\{\left[\begin{array}{l}
1 \tag{13}\\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

can construct any vector in \mathbb{C}^{2}. If $|\mathcal{B}|$ is minimal, we say \mathcal{B} is orthonormal.
Exercise 10. $\sqrt{ } \sqrt{3}$ What is a basis for the vector space of all $2 x 2$ matrices?
The anharmonic co-ordinates and equations employed, for the plane and for space, were suggested to the writer by some of his own vector forms; but their geometrical interpretations are assigned.
-William Rowan Hamilton (1866) [13]

7.3 Probability theory

Rather than rigorously defining the axioms of probability, let's set down a few definitions. A probability is a real number p, restricted to the range $[0,1]$, that represents the outcome of a particular event E in a controlled setting where Ω is the set of all possible events. For example, when a fair coin is tossed, we have $\Omega=\{$ HEADS, TAILS $\}$, and $p($ HEADS $)=p($ TAILS $)=1 / 2$. If we wanted to get heads all the time, we might add a little more weight to the underside; experimental data might show us that p (HEADS) has increased to $2 / 3$; we can deduce that p (TAILS) has decreased to $1 / 3$ by this formula:

$$
\begin{equation*}
\sum_{E \in \Omega} p(E)=1 \tag{14}
\end{equation*}
$$

If two events A and B are independent, then the probability of both happening is $p(A) p(B)$, and the probability of either of them happening is $p(A)+p(B)$.

Exercise 11. \mathcal{B} What is the probability of a monkey correctly typing a syntactically correct Hello, World program on its first try?

Exercise 12. \boldsymbol{N}° Prove the law of total probability: that for any discrete set of events comprising A and $B_{n}(n \geq 0)$, we have $P(A)=\sum_{n} P\left(A \cap B_{n}\right)$.

Exercise 13. . $^{\text {r }}$ The binomial theorem states that, for any $n \geq 0$,

$$
\begin{equation*}
(x+y)^{n}=\sum_{k \geq 0} C(n, k) x^{n-k} y^{k} \tag{15}
\end{equation*}
$$

where $C(n, k)=\frac{n!}{(n-k)!k!}$

- For which values of x and y can we compute p^{n} ?
- If p represents a probability, what is the meaning of the binomial theorem? (Hint: it has to do with how $C(n, k)$ is interpreted.)
- What happens if we let n go to infinity?

Exercise 14. denoted

$$
\begin{equation*}
\mu(f)=\int_{-\infty}^{\infty} x f(x) d x \tag{16}
\end{equation*}
$$

- What is the expectation value of $e^{-x^{2}}$?
- Suppose we are given a complex-valued function $f(z)$. What function would you need to multiply the it by to produce a real-valued function f ? Use your answer to compute $\mu(f)$.

Since all models are wrong the scientist must be alert to what is importantly wrong.
-George E. P. Box (1976) [14]

7.4 The field of numbers

With those exciting definitions out of the way, it's time for a brief an-historic interlude into the realm of number fields. Recall that the symbol \subset is a binary operator pronounced "subset". Ready?

$$
\begin{equation*}
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \tag{17}
\end{equation*}
$$

The American high school mathematics curriculum requires you to learn about all of these; a working mathematician would tell you, though, that all of these sets have the same structure. So how do we make sense out of Equation 17 ? Working from left to right, we have \mathbb{N}, the "natural" numbers, $1,2,3 \ldots$ The integers are a little more interesting, since they give us 0 and negative naturals. Then we get the "rational" numbers \mathbb{Q}, for "quotient": these are analogous to IEEE-754 floating point numbers. So what is \mathbb{R} ?

The reality is that there is no good definition for \mathbb{R} : the "real" numbers. At this point, we leave behind the comfortable chair of software development and approach the chalkboard of a physics laboratory. A real number can be most succinctly defined as the result of a measurement. For example, let's say you wanted to measure the weight of a basketball, without bothering to order one (and possibly a bathroom scale) from Amazon. Your gym class experience would tell you that the radius is about one foot (or one-third of a meter). A quick search would tell you the volume of a sphere is $4 \pi r^{2}$, giving you an exact answer of $4 \pi / 9 \mathrm{~m}^{3}$.

But there's that finicky number in there: π. What is its nature? Is it a rational number? Somebody in ancient Greece didn't think so, and for that they paid the ultimate price. (Yes, this really happened. Kind of.) After the funeral, the Athenian academicians convened to introduce a new set of numbers to reconcile themselves to their confounding reality: there are numbers that transcend human intuition. Since "transcendent" hadn't been coined yet, they ended up going with "real," since they came up with it by solving a geometry problem (the ratio of a circle's circumference to a diameter).

In fact, the ancient Greeks only knew π as an integer. Only in 1400 was it known to ten places, and today it can be calculated to an arbitrary precision with fancy formulae such as

$$
\begin{equation*}
\frac{1}{\pi}=\frac{\sqrt{2}}{2} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{k!^{4}(396)^{4 k}} \tag{18}
\end{equation*}
$$

discovered by Ramanujan just over a century ago. What a time to be alive!
Exercise 15. \mathcal{B} Show that $\mathbb{Z}=\{ \pm n: n \in N\} \cup\{0\}$
Exercise 16. \mathcal{B} Show that $\mathbb{R}=\mathbb{C} \backslash\{a i: a \in \mathbb{R}\}$.
The Moon is handed down by memory to be eleven thousand yojanas in diameter. Its peripheral circle happens to be thirty three thousand yojanas when calculated. (Bhishma Parva of the Mahabharata, 6.12.40)

7.5 Complex variables

You may remember being asked to find the solutions to polynomial equations, such as $x^{2}+1=0$. To solve for x, simply subtract 1 from both sides and... take the square root of both sides. We're left with $x= \pm \sqrt{-1}$. (The \pm is added since squaring a negative number is positive.) Mathematicians struggled at this juncture for centuries, but in the early 1800s settled on a new symbol to indicate the "imaginary" unit: $i=\sqrt{-1}[15]$.

Complex numbers are thus compactly defined as:

$$
\begin{equation*}
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}, i=\sqrt{-1}\} . \tag{19}
\end{equation*}
$$

Just like real numbers, complex numbers can be added, multiplied, and so forth to produce new complex numbers.

Sometimes, we care about the distance between a complex number and the origin $(0,0)$. The modulus of a complex number $z=a+b i$ is equal to

$$
\begin{equation*}
|z|=\sqrt{a^{2}+b^{2}} . \tag{20}
\end{equation*}
$$

Geometrically, it is the distance from the origin $(0,0)$ to the point (a, b) in Cartesian coordinates, as illustrated in Figure 7.5.

An illustration of the complex modulus (denoted $\left|z_{0}\right|$) against the complex plane; the horizontal axis represents the "real part" of a complex number z, denoted \mathfrak{R}, while the horizontal axis represents the imaginary part, denoted \mathfrak{I}.

The complex conjugate of $z=a+b i$ is $z^{*}=a-b i$; simply flip the + or - sign in front of the imaginary part. The argument of z is the angle subtended by
the line of length $r=|z|$ and the positive \Re axis; in figure 7.5, it's denoted as θ. We may now define a complex number in its polar form:

$$
\begin{equation*}
z=r e^{i \theta}=r(\cos \theta+i \sin \theta) \tag{21}
\end{equation*}
$$

where $r=|z|$, and $e=2.71828 \ldots$ is a very special number. Letting $r=1$ and $\theta=\pi$, we're left with Euler's identity

$$
\begin{equation*}
e^{i \pi}+1=0 \tag{22}
\end{equation*}
$$

onto which many have ascribed an aesthetic quality; our goal is to put it to use in describing qubits and gate actions.

Exercise 17. \mathcal{B} Show that $z z^{*}=|z|$ for any $z \in \mathbb{C}$.
Exercise 18. $\sqrt{\infty}$ Prove de Moivre's theorem: for any $z \in \mathbb{C}$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
z^{n}=r^{n}(\cos n \theta+i \sin n \theta) \tag{23}
\end{equation*}
$$

Exercise 19.

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

Hint 1: Multiply the left-hand-side by itself. Hint 2 (for habanero lovers): use Cauchy's integral formula: $\oint_{\mathcal{C}} f(z) d z=0$.

Exercise 20. 3 Prove that if

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \quad \Re(z)>0
$$

then $\Gamma(z)=z \Gamma(z-1)$.
Exercise 21. as

$$
\begin{equation*}
e^{x}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!} \tag{24}
\end{equation*}
$$

- If $x, n \in \mathbb{N}$, how can you interpret the right-hand side?
- Is the series still valid for $x \in \mathbb{C}$? How do you know?

We must therefore conclude that the square root of a negative number cannot be either a positive number or a negative number, since the squares of negative numbers also take the sign plus: consequently, the root in question must belong to a entirely distinct species of numbers, since it cannot be ranked either among positive or negative numbers.

- Leonhard Euler (1770) [16]

Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, with some indignation, to the many beautiful theorems...
-Eugene Wigner (1960) [17]

8 Qubits defined

In the quantum computing literature, $|\psi\rangle$ and sometimes $|\phi\rangle$ are often used to denote quantum bits, or qubits. Equation 10 is a standard (vector) representation of a qubit, where $\alpha, \beta \in \mathbb{C}$; therefore, $|\psi\rangle$ is a vector in the vector space \mathbb{C}^{2}.

On occasion, we must multiply two qubits together: we write this as

$$
|\psi\rangle|\phi\rangle=\binom{u_{1}}{u_{2}}\binom{v_{1}}{v_{2}}=\left(\begin{array}{l}
u_{1} \tag{25}\\
u_{2} \\
v_{1} \\
v_{2}
\end{array}\right)
$$

which can be thought of more as a concatenation per se, and we'll usually keep it as $|\phi\rangle|\psi\rangle$ or just $|\phi \psi\rangle$ when we work on actual circuits.
Exercise 22. \mathcal{H} Calculate $C X|\phi\rangle|\psi\rangle$.
This is how you are to build it: The ark is to be three hundred cubits long, fifty cubits wide and thirty cubits high. (Genesis 6:15)

8.1 Superposition and basis vectors

In quantum computing, complex numbers serve a special purpose: they allow us to write out a qubit $|\psi\rangle$ as

$$
\begin{equation*}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \tag{26}
\end{equation*}
$$

where $\alpha, \beta \in \mathbb{C}$, which are known as the probability amplitudes of $|\psi\rangle$, meaning that the probability of measuring $|\psi\rangle$ in the $|0\rangle$ state is $|\alpha|^{2}$ (and similarly for $|1\rangle)$. By the definition of probabilities, we have

$$
\begin{equation*}
|\alpha|^{2}+|\beta|^{2}=1 \tag{27}
\end{equation*}
$$

A common question is: if qubits represent something physical, why do we use complex numbers? The reason has to do with the fact that realvalued probabilities p are limited to the range $0 \leq p \leq 1$. We may want to add probabilities together, but we can't allow the total probability to exceed one. Using complex numbers allows us to add and subtract probability amplitudes instead.

The reality is that many of the values of α and β we use initially within quantum computing are real numbers, but some of them are complex-valued, so we define it this way to cover all the cases. (This still works since the reals are a subset of \mathbb{C}.)
$|0\rangle$ and $|1\rangle$ are together known as the Z basis vectors; equation (26) describes the superposition of $|\psi\rangle$ in Z basis vectors.

Exercise 23. $3 \sqrt[3]{ } 3$ Show that the probability of measuring $|1\rangle$, when $|+\rangle$ is projected into the Z-basis, is 1/2.

Mathematics is the foundation of all exact knowledge of natural phenomena.
—David Hilbert (1900) [18]

8.2 Eigenvalues and eigenstates

For a given matrix A and state vector $|\psi\rangle$, the eigenvalue $\lambda \in \mathbb{C}$ is defined as

$$
A|\psi\rangle=\lambda A
$$

By this definition, we can say that $|\psi\rangle$ is the λ-eigenstate of A.
Exercise 24. \mathcal{B} Find the eigenvalues and eigenstates of

$$
\left(\begin{array}{ll}
2 & 8 \\
1 & 4
\end{array}\right)
$$

...dais sich das schwingende Elektron gegeniiber Licht, das viel kurzwelliger ist sis alle Eigenschwingungendes Systems, wie ein freies Elektron verhlt. ${ }^{3}$
—Werner Heisenberg (1925) [19]

[^2]
9 Algebraic topology

The goal of this section is to introduce the mathematics used in advanced applications of TQEC, starting with defining the planar code precisely; my recommendation is to keep the key definitions of this section in your back pocket.

9.1 Groups

A group is a mathematical object that associates a set G with a binary operator. Typically we do not assign any particular symbol to this operator, akin to numeric multiplication. Formally, the operator maps G to $G \times G$ to G, and obeys these three properties:

- (Associativity) For any $a, b, c \in G$, we have $a(b c)=(a b) c$.
- (Identity) There exists an $e \in G$ such that, for any $a \in G$, we have $a e=e a=a . e$ is referred to as the identity element of G.
- (Inverses) For all $a \in G$, there exists its inverse a^{-1} such that $a a^{-1}=e$.

Crucially, not every group is commutative: we can't assume that $a b=b a$.
A group that is commutative is known as an Abelian group. An example of an Abelian group is the integers, paired with addition, written as $(\mathbb{Z},+)$, which we can write more compactly as \mathbb{Z}. For any $n \in \mathbb{N}$, the integers modulo n is defined as

$$
\begin{equation*}
\mathbb{Z}_{n}=\{a \quad(\bmod n): a \in \mathbb{Z}\} \tag{28}
\end{equation*}
$$

Exercise 26. $\mathcal{B} \mathcal{B}$ Prove that \mathbb{Z}_{n} is an Abelian group.
Exercise 27. 3 Prove that \mathbb{R}^{2} is a group.
Exercise 28. (Heisenberg group) Prove that for all $a, b, c \in \mathbb{C}$, the set of upper-triangular $3 x 3$ matrices, represented as

$$
\left(\begin{array}{lll}
1 & a & c \tag{29}\\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

is a group under matrix multiplication.

Exercise 29. $2 x 2$ unitary matrices with determinant 1. Prove that $S U(2)$ is non-Abelian.

Thus, although Abel shared with many mathematicians a complete lack of musical talent, I will not sound absurd if I compare his kind of productivity and his personality with Mozart's.
-Felix Klein (late 19th or early 20th cent) [20]

9.2 Generating subgroups

Given a group G, its subgroups H are denoted $H \subseteq G$ due to the set relationship. Importantly, H is a group in its own right, and has the same identity element as G. The trivial subgroups of G are itself and the empty set. If the elements of H can be put together such that you end up back with G,Remembering that sets cannot, by definition, contain duplicate elements., we say that H generates G, or $\langle H\rangle=G$.

Exercise 30. \mathcal{B} Prove that $\left\langle\mathbb{Z}_{2}\right\rangle=\mathbb{Z}$.

9.3 Group stabilizers

Given a group G, the set X, which is chosen such that $g x$ is a valid product for all $g \in G$ and $x \in X$, we say that X stabilizes G.

9.4 Gaussian lattices

The Gaussian integers are defined as $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{C}\}$. If you were to plot the elements of $\mathrm{Z}[\mathrm{i}]$ on the complex plane, you'll see a nice dotted structure; they form what is known as the Gaussian integers, or for our purposes a lattice:

Figure 1: The Gaussian integers.
If we were to declare $F \subset \mathbb{Z}[i]$, we could systematically create an arbitrarily large lattice $\langle F\rangle$ that covers the entire plane.
Exercise 31. $\mathcal{B} ふ$ Prove that $\mathbb{Z}[i]$ is a group.
Exercise 32. $\boldsymbol{\sim}^{\boldsymbol{\omega}} \mathfrak{b} \mathfrak{B}$ Prove that F is a subgroup of $\mathbb{Z}[i]$.
Exercise 33. $\boldsymbol{\omega}^{\boldsymbol{\omega}} \boldsymbol{\infty}$ Prove that if $|\mathbb{C}|=\aleph_{1}$, then $|\mathbb{Z}[i]|=\aleph_{0}$. (Hint: have you ever studied Hebrew?)

9.5 Equivalence classes

The structure of every possible \mathbb{Z}_{n} admits what is known as an equivalence class of \mathbb{Z}. To show what an equivalence class is, consider the example $n=3$. First, compute each element: that is easy enough, and we denote the sets as $A=\{[0],[1],[2]\}$. Next, associate each $a \in A$ with the set $\{a \pm n k: k \in \mathbb{Z}\}$:

$$
\begin{aligned}
& {[0] \rightarrow\{\ldots-3,0,3,6,9 \ldots\}} \\
& {[1] \rightarrow\{\ldots-2,1,4,7,10 \ldots\}} \\
& {[2] \rightarrow\{\ldots-1,2,5,8,11 \ldots\}}
\end{aligned}
$$

It is clear that the values of the association forms a partition of \mathbb{Z}. Thus, A is known as an equivalence class of \mathbb{Z}.

Exercise 34.
...the importance of applications [of groups] such as coding theory and cryptography has grown significantly.
—Thomas W. Judson (2022) [21]

9.6 Topological braids

The group of n strands, denoted B_{n}, is a fundamental structure in topology, and enables advanced contributions to our field. If you've ever played cat's cradle, you already know what a braid looks like: imagine holding out both hands, and tying rubber bands between each of your four fingers; to illustrate B_{4}. Like it or not, each possible way you could have done that formulates a group.

Your first question should now be: what do my fingers represent? The identity is rather simple: your left pinkie connects to your right pinkie, and so on, up to your index fingers. But let's assume our cradle is a little more interesting than that, and your baby brother comes over and tries to bend your bands out of shape. Since you're bigger than him, he only manages to change ho9w the bands are interlaced, and they don't slip from your fingers at all. Since your brother has the same genes as you, his actions constitute an identity operation.

The next day, since it's show-and-tell day in math class, you do the same thing, but instead the professor comes over, and swaps two of the rubber bands that connect to your right hand. He asks, "Johnny, is this what you brought to class today?" Tim, who you could have sworn was just asleep, blurts out "no, you've composed what he brought in with... umm..." The prof replies, "that's right, Tim, but what did I compose it with?"

Being an astute student, you grab some chalk and gets to work, only you realized you forgot the book, so you begin deriving the composition rule yourself... but since tomorrow is the final day of classes, you figure that studying for the final exam will be a better use of your time. Now dissatisfied with the public education system, you search in vain for a good book on the subject of braid theory.

Okay, enough with the anecdote. The best way to fully understand the structure of a braid is in terms of what's known as a permutation group, which are denoted as S_{n}. Permute is just a fancy term for mapping: for example, our identity braid maps every key in the domain to itself, which we can denote as

$$
\begin{equation*}
\mathrm{id}=\{1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4\} \tag{30}
\end{equation*}
$$

since it's our identity element. We can write this more succinctly as (1234).
Exercise 35. B B What does the permutation (4321) represent?
Exercise 36. $\boldsymbol{N}^{\boldsymbol{n}} \boldsymbol{\beta}$ Show that S_{n} is a group of order $\left|S_{n}\right|=n$!.
The actual braid group is a little more complicated than that, since it involves equivalence classes and something called homotopy. Since other works treat these issues better than the author ever could, I'm going to stop the math bandwagon and switch over to computer science. I hope you enjoyed the ride.
 tum error correction.

I suggested that topologically ordered states can serve as a physical
analogue of error-correcting quantum codes.
—Alexei Kitaev (2006) [22]

10 Quantum gates and circuits

Quantum gates are the basic components of quantum circuits, which act on individual qubits. Each gate is represented by a unitary matrix.

10.1 Unitary matrices

A unitary matrix U is any matrix that is self-adjoint. We denote the adjoint with the "dagger" symbol, \dagger, and get

$$
\begin{equation*}
U U^{\dagger}=U U \tag{31}
\end{equation*}
$$

The adjoint of a matrix is also known as its conjugate transpose, which we find by swapping the rows and columns (which yields the transpose), and taking the conjugate of each element:

$$
U^{\dagger}=\left(\begin{array}{ll}
a & b \tag{32}\\
c & d
\end{array}\right)^{\dagger}=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

Every quantum computing operator, both as an error and a gate, is represented by a unitary matrix.

Exercise 38. B B Show that

$$
\gamma\left(\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right) \quad \gamma \in \mathbb{C}
$$

is unitary.
Exercise 39. 今BProve that if U is unitary, then $U^{\dagger}=U^{-1}$ and $U^{2}=I$.
Of special interest are the unitary representations, in which the linear transformations leave invariant a positive definite quadratic form in the co-ordinates of a vector.
-Paul Dirac (1944) [23]

10.2 Hadamard (H)

$$
-
$$

A Hadamard gate places a Z-basis qubit in superposition. Its matrix is defined as

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

The plus and minus states, which comprise the X basis, are defined as:

Both the plus and minus states demonstrate superposition: if we were to measure the qubit in either state, there'd be a $1 / 2$ probability of measuring a 0 or 1 .

Exercise 40. \mathcal{B} Prove that H squares to the identity, meaning $H H=I$.
Exercise 41. \mathcal{B} Prove that H is unitary.
Exercise 42. 3 Show that $X|+\rangle=|+\rangle$.
It has been written that the shortest and best way between two truths of the real domain often passes through the imaginary one. —Jacques Hadamard (1945) [24]

10.3 Controlled-X (CX)

CX is our first example of a two-qubit gate; the control bit remains unchanged, but depending on its value, will "flip" the second gate, which is to say, apply the X matrix:The row vectors are $\{|-\rangle,|+\rangle\}$.

$$
X|\psi\rangle=\left(\begin{array}{ll}
0 & 1 \tag{33}\\
1 & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{\beta}{\alpha} .
$$

A useful working definition of CX is by analogy to classical XOR, which conditionally applies a NOT gate to the input line; hence the term CNOT frequently used in the quantum computing to describe this circuit. It takes two qubits, control and target.Look closely at the diagram: it's a literal target! If the control qubit is $|0\rangle$, and the target qubit remains the same; otherwise, it is set to $|1\rangle$.

The CX gate's matrix representation is

$$
C X=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

As with H, the matrix representation of CX is involutary and unitary. The matrix representation of CNOT is the tensor product (or Kroenecker product) $I \otimes X$, which we can define more precisely asConfusingly, the \otimes symbol is used to represent many kinds of "tensor products." The full computation of CNOT $=I \otimes X$ by this definition is left as an optional exercise to the reader; the author used a chatbot to produce the typesetting of this formula. ©

$$
A \otimes B=\left(\begin{array}{ll}
a_{1} & a_{2} \tag{34}\\
a_{3} & a_{4}
\end{array}\right) \otimes\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)=\left(\begin{array}{llll}
a_{1} b_{1} & a_{1} b_{2} & a_{2} b_{1} & a_{2} b_{2} \\
a_{1} b_{3} & a_{1} b_{4} & a_{2} b_{3} & a_{2} b_{4} \\
a_{3} b_{1} & a_{3} b_{2} & a_{4} b_{1} & a_{4} b_{2} \\
a_{3} b_{3} & a_{3} b_{4} & a_{4} b_{3} & a_{4} b_{4}
\end{array}\right) .
$$

Exercise 43. \mathcal{S}^{3} Describe the difference between $A B$ and $A \otimes B$ in terms of gates and state vectors.

God made the natural numbers; all else is the work of man.
-Leopold Kronecker (late 19th cent.) [25]

10.4 Controlled-Z (CZ)

This is a similar gate to CX, but there's no target qubit. The action is rather simple to understand: if the input qubits are equal to $a|11\rangle$, the result state is $-a|11\rangle$. For any $a|\psi\rangle$, where $\psi \in\{[00],[10],[01]\}, a|\psi\rangle$ is left alone. The matrix representation of CZ can be determined by $I \otimes Z$, where

$$
Z=\left(\begin{array}{cc}
1 & 0 \tag{35}\\
0 & -1
\end{array}\right) .
$$

The row vectors are obtained from the Z basis, where $Z=\{|0\rangle,-|1\rangle\}$.
Exercise 44. \mathcal{B} Describe H in terms of X and Z.
Competent means we will never take anything for granted. We will never be found short in our knowledge and in our skills. Mission Control will be perfect.
-Gene Kranz (2001) [26]

10.5 Measurement

A measurement gate projects a qubit into a particular basis. For example, M_{z} projects a single qubit into the Z basis, meaning that it returns either a (classical) 0 or 1. An M_{x} gate measures in the X basis, or $\{|+\rangle,|-\rangle\}=$ $\{H|0\rangle, H|1\rangle\}$. An M_{z} gate can therefore be written as

$$
-M_{x}-\equiv H-M_{z} .
$$

We don't need a matrix representation for M, since its operation is defined by the hardware implementation.

Exercise 45. \mathcal{H} Prove the Z basis measurement identity.
We are talking about a predictive theory, not just measurements after the fact.
-Richard Feynman (1965) [27]

10.6 Reset

This gate forces a qubit into the $|0\rangle$ state.Physically, this is similar to a measurement operation, but we wait around for the qubit to relax into the $|0\rangle$ state.

Exercise 46. Explain why M and R are the least time-performant quantum gates.

This workspace gets reset to 0 after each subroutine of our algorithm, so we will not include it when we write down the state of our machine.
—Peter W. Shor (1997) [28]

10.7 T and S

The T gate is defined as

$$
T=\left(\begin{array}{cc}
1 & 0 \tag{36}\\
0 & e^{i \pi / 4}
\end{array}\right)
$$

This is also referred to as the $\pi / 8$ gate. This is due to it corresponding with a $\pi / 8$ rotation about the vertical axis of the Bloch sphere. A similarly defined gate is S, also commonly denoted P (for "phase"):

$$
S=\left(\begin{array}{ll}
1 & 0 \tag{37}\\
0 & i
\end{array}\right)
$$

Note that $i=e^{i \pi / 2}$; consider $\left(e^{i \pi / 4}\right)^{2}=e^{i \pi / 2}$, meaning that $e^{i \pi / 4}$ is the square root of i; hence, we can write

$$
\begin{equation*}
T=\sqrt{S} \tag{38}
\end{equation*}
$$

which tells us how we can build a T gate using S gates:

S and T are collectively referred to as phase shift gates, admitting a general form

$$
\left(\begin{array}{cc}
1 & 0 \tag{39}\\
0 & e^{i \varphi}
\end{array}\right)
$$

where φ, called the phase angle, is of period 2π. Meaning that $0 \leq \varphi<2 \pi$, constricting it to a single rotation about the unit circle.
Exercise 47. $\mathcal{B} \mathcal{B}$ For which value of φ does the phase shift matrix square to the identity?

I Tiresias, though blind, throbbing between two lives...
-T. S. Eliot, The Waste Land (1922)

10.8 Toffoli

This gate is also referred to as CCNOT, since it takes two control bits; the value of the target bit is flipped if both control bits are equal to $|1\rangle$. Since we're considering three qubits and a new output state, we'll need a tensor product with four matrices to derive the matrix representation, which is $I \otimes I \otimes I \otimes X$.

Exercise 48. .
With these constraints, one can satisfactorily deal with both functional and structural aspects of computing processes; at the same time, one attains a closer correspondence between the behavior or abstract computing systems and the microscopic physical laws (which are presumed to be strictly reversible) that underly any concrete implementation of systems.
—Tommaso Toffoli (1980) [29]

10.9 Clifford gates and universality

The Clifford gates comprise the set $\{C X, H, S\}$; combined with T, they're known as Clifford-T.

Theorem 1. Clifford-T gates build a universal quantum computer.
The proof of the theorem is beyond the scope of this work, but it's useful to have the definition and statement handy. The Toffoli gate will frequently be included in this set due to its efficiency. One of the core justifications for this claim is that each of these gates is reversible, since $U^{-1}=U$ for any unitary matrix U. This is impossible to achieve with a classical computer since heat loss within the circuit destroys information. For example, an XOR gate cannot be reversed; it combines two wires into a single one.

It contains, next, a generalization of them, applicable to any number of dimensions; and a demonstration that the algebra thus obtained is always a compound...
—William K. Clifford (1878) [30]
Success is a lousy teacher. It seduces smart people into thinking they can't lose.
-Bill Gates

10.10 Quantum circuits

What does a quantum circuit look like?

Well, that's not a bad answer.

Figure 2: A quantum circuit.

That's better. But those who've had the fortune (or perhaps misfortune) of studying music theory may draw a few key connections:

- Time moves from left to right.
- Each horizontal line has a relationship to the other.
- The lines are logically and temporally connected.
- The connections along the lines can be differently shaped.

Let's explain the meaning for quantum computing, by examining the top horizontal line of Figure 2.

- Time moves from left to right: The action occurs in the order top-left dot, followed by the "H," another dot, and so on.
- Each horizontal line has a relationship to the other. Each line represents a qubit.
- The lines are logically and temporally connected. The lines between two qubits represent actions that depend on both of them.
- The connections along the lines can be differently shaped. In this picture, we have two kinds of gates, some of which act on a single qubit (H), and others act on two (another kind).

A person of any mental quality has ideas of his own. This is common sense.
-Franz Liszt

10.10.1 The Bell pair

Figure 3: A circuit that entangles two qubits (prepared in the state $|00\rangle$) into a Bell pair

Figure 3 depicts our first example, which prepares a quantum state known as a Bell pair (also known as an EPRNamed for Einstein, Podolsky, and Rosen, for pointing out that this state suggests that "hidden information" leads to quantum entanglement; decades later, Bell pointed out that quantum theory is incompatible with such a notion [31]. pair): on the left, both qubits are prepared in the $|0\rangle$ state; at this point, the qubits are prepared as $\left|\psi_{0}\right\rangle=|00\rangle$. Next, a Hadamard gate is applied to the first qubit, producing the state

$$
\left|\psi_{1}\right\rangle=|+\rangle|0\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|0\rangle=\frac{|00\rangle+|10\rangle}{\sqrt{2}}
$$

(Here, we're treating kets as algebraic objects we can add and multiply with complex numbers.) It's important to write $|\psi\rangle_{1}$ in this manner, since we're about to apply a CX gate, which requires us to inspect both qubits simultaneously. After applying CX, we're left the Bell pair

$$
\left|\psi_{2}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

(Note that we don't need to use the matrix representation of CX, which is rather cumbersome.) The Bell pair is the simplest example of quantum entanglement: it is only possible to measure 00 or 11 , making the qubits "entangled."

Exercise 49. $\sigma^{\alpha} \beta$ Prove that the circuit in Figure 12.3 corrects $X|(\alpha|0\rangle+\beta|1\rangle)\rangle$.
Consider a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite directions. Measurements can be made, say by Stern-Gerlach magnets, on selected components of the spins...
—John W. Bell (1964) [31]
This circuit is interesting because it has inclines and declines. Not just up, but down as well.
-Murray Walker

11 Fault-tolerant computing

The best-performing quantum computers available today are made of superconducting circuits, which can only operate at near-absolute zero temperatures. Due to construction and operating costs in the hundreds of millions of dollars, it's likely that quantum computers will only exist in the cloud for the foreseeable future; quantum computers will likely be incorporated into distributed systems. By that token, we can treat quantum computers as nodes in a geographically distributed computer system.

11.1 Formalism

Distributed systems are commonly modeled as a network graph $G=(V, E)$; since the representations of V and E are arbitrary, we can think of G as a topological object.

11.2 The CAP theorem

Theorem 2. (Brewer) Any distributed data store cannot guarantee more than two out of three of: consistency, availability, and performance.

11.3 Exercises

Exercise 50. \mathcal{H} Show that a complete graph K_{n} represents a faulttolerant peer-to-peer network.

12 Stabilizers

12.1 Formalism

A stabilizer A of a state $|\psi\rangle$ is an operator such that $|\psi\rangle$ is the +1 eigenstate of A. In the absence of a Pauli error, we have

$$
\begin{equation*}
A|\psi\rangle=|\psi\rangle . \tag{40}
\end{equation*}
$$

This isn't to say that A has no impact on $|\psi\rangle$; its action is a projection onto a particular eigenstate. Let's define its action.

12.2 The controlled- A gate (CA)

To illustrate the stabilizer formalism, let's introduce a new gate, which we'll call A, which takes an arbitrary input $|\psi\rangle$, and reports the measurement of an ancilla, which we initialize as $|0\rangle$ and name q_{0}. This bit controls whether the A operator is applied to $|\psi\rangle$.

Figure 4: The A circuit, which is not a stabilizer.
Let's examine the action of this circuit on the state $|0\rangle|\psi\rangle$:

$$
\begin{aligned}
& \xrightarrow{H q_{0}}|+\rangle|\psi\rangle \\
& \xrightarrow{\mathrm{CA}|\psi\rangle}|0\rangle|\psi\rangle+|1\rangle A|\psi\rangle \\
& \xrightarrow{H q_{0}}|+\rangle|\psi\rangle+|-\rangle A|\psi\rangle \\
& \xrightarrow{M q_{0}} 0(|\psi\rangle+A|\psi\rangle)+1(|\psi\rangle-A|\psi\rangle)
\end{aligned}
$$

The final line of the above indicates that, in the case that $A|\psi\rangle=|\psi\rangle$, it is only possible to measure a 0 in this circuit.

But now, the input state $|\psi\rangle$ has been transformed into a superposition of $|\psi\rangle$ and $A|\psi\rangle$, which we may denote as:

$$
\begin{equation*}
|\psi\rangle \pm A|\psi\rangle \tag{41}
\end{equation*}
$$

We'll want to be a bit more specific when we build actual circuits. In general, to construct a circuit that measures a stabilizer, an ancillary qubit is prepared in the $|0\rangle$ state, which is read by a measure gate as 1 in the presence of an error. We implement this circuit in two different ways to measure X and Z stabilizers.

12.3 The X stabilizer

Since we only care about correcting X and Z errors, we can implement the A stabilizer measurement circuit as X and Z stabilizer measurement circuits. Let's start with the X stabilizer:

This circuit is the same as the controlled- A, but instead a $C X$ circuit is in is place. Let's replace A with X. From equation 41:

$$
\begin{equation*}
0(|\psi\rangle+X|\psi\rangle)+1(|\psi\rangle-X|\psi\rangle) \tag{42}
\end{equation*}
$$

Suppose we were to build a quantum circuit with a state $|\phi\rangle$ representing the data we want to preserve, and assume an X error were to act on the state $|\phi\rangle$, which we write as

$$
\begin{equation*}
|\psi\rangle=X|\phi\rangle=\frac{|+\rangle+|-\rangle}{\sqrt{2}} \tag{43}
\end{equation*}
$$

To summarize, this stabilizer has a dual purpose:

- To detect quantum errors, which are indicated by a 1 measurement;
- To correct quantum errors; this circuit can remove a single X error that occurred before the circuit ran.

A careful reader may ask what would happen if an X error occurs immediately before or after the control point; consider the following identity:

In this case, the X error is propagated into $|\psi\rangle$, however, we're able to detect the fact that an X error occurred at this point!

12.4 The Z stabilizer

The Z stabilizer operates in a similar fashion to the X stabilizer, and can similarly detect and correct a single Z error by exploiting the identity

Figure 5 provides an example of measuring three consecutive stabilizers.

Figure 5: Three 2-qubit Z stabilizers in action. The red lines represent the presence of an X error, and the arrows represent the results of stabilizer measurement. The (classical) 0 and 1 measurements form a stream, which can fed into a classical algorithm to determine which qubits must be flipped, forming the basis of error-tolerant quantum computation [32].

The ancillary qubit will be in the $|0\rangle$ state if no error has occurred. If an error has occurred, the ancillary qubit will be in the $|1\rangle$ state. Figure 5 demonstrates examples of Z stabilizer measurement. In this example, each measurement requires an ancillary qubit (initialized to $|0\rangle$ at the start of each round of measurements).

12.5 Exercises

Exercise 51. $\mathcal{F} \beta$ Prove that the circuit in figure 5 works as advertised.
Exercise 52. ${ }^{2}$ Prove the "controlled X " identity:

It was these we had in mind when explaining stability...
—Erwin Schröedinger (1944) [33]

13 Lattice surgery

13.1 The planar code

Given a Gaussian lattice $\mathcal{F}=\mathbb{Z}[i]^{2}$, the generated group $\mathcal{G}=\langle\mathcal{F}\rangle$ describes the planar code, (a kind of surface code) which we can use to build a twodimensional quantum computer. If you were to take a classical integrated circuit out of its plastic packaging and hold it underneath an electron tunneling microscope, you'd most likely find a bunch of NAND gates cobbled together (which suffices to build a universal classical computer). Since we have to work a little harder than that to build a quantum computer, we begin our work here with a more abstract structure, where each point in the lattice corresponds to a physical qubit.

In that sense, the lattice works as a framework to hang things on. Suppose $C \subset \mathcal{G}$. A plaquette (or tile) P can be defined as any convex hull ∂C. We can now define the planar code as

$$
\begin{equation*}
\mathcal{S}=\bigcup_{i \geq 1} P_{i} \tag{44}
\end{equation*}
$$

In most examples, ∂P_{i} is a square (such that $\left|\partial P_{i}\right|=4$, or triangular, such that it's drawn as a half-moon shape. The collection of all the plaquettes is what we call the planar code: the fundamental parameter is the code distance d, which is its horizontal or vertical length, making each code square-shaped.

Figure 6: A distance 7 planar code. The gray and white tiles represent Z and X stabilizers, respectively. The corner of each plaquette contains a single data qubit, and each plaquette contains one measure qubit in its center [32].

If $P_{i} \cap P_{j} \neq\{ \}$, we say that P_{i} and P_{j} "touch" (or, are nearest neighbors).
Lemma 1. A planar code whose plaquettes satisfy the condition that, each nearest neighbor P_{i} and P_{j} are opposite colors, and have an even number or qubits in common, is regarded as proper (or standard) planar code.

Theorem 3. The planar code can correct $\left\lfloor\frac{d-1}{2}\right\rfloor$ topologically trivial errors per circuit run.

13.2 Logical qubits

Due to the short-term longevity of physical qubits, we use $O\left(d^{2}\right)$ physical qubits (comprising plaquettes), to represent a single logical qubit, denoted $\left|\psi_{L}\right\rangle$. Importantly, the logical qubit is not a quantum mechanical object per se; it is a combinatorial object, defined entirely in terms of plaquettes.

The meaning of $\left|0_{L}\right\rangle$ is also rather subtle, because it doesn't correspond to a particular set of qubits, rather, we say that it is the simultaneous +1 eigenstates of all stabilizers contained in \mathcal{S}.

Example 1.

13.3 Logical operators

The standard planar code is a $d \times d$ array of logical qubits. If we know how to encode a (long-lived) logical qubit using one, the code can represent a single logical qubit. The key mathematical reason why all of this works is that Pauli operators are anticommutative, that is:

$$
\begin{equation*}
X Z=-Z X . \tag{45}
\end{equation*}
$$

If a planar code comprises consecutive alternating Z and X stabilizers, we have

$$
X Z X Z X=X Z(-Z X) X=-X
$$

Since we have an odd number of plaquettes (or stabilizers) in one direction, so we end up with $-X$ or $-Z$ for any odd d. This means that in the presence of an X error, we end up with $-I$, which indicates the presence of an an X error [34].

13.4 Operator movement

Returning to the surface code, let's look more specifically at the effect of merging and splitting surface codes together. at what Figure 7 illustrates a basic example of operator movement.

Figure 7: Performing operator movement. (a) The blue dots represent measurement qubits, and the green and red lines represent measurement along the Z and X axes. (b) The product $a X$ represents the result of the Kronecker product of X stabilizer measurements across the blue measure qubits [35].

13.5 Logical CX

Now that we've built logical qubits and X and Z operators, we can now build more interesting logical gates, starting with CX. Figure 8 illustrates how we can represent a merged set of plaquettes into a single model. For each prism, the bottom represents the surface code; the upward dimension represents the arrow of time pointing upward; the X and Z stabilizers are traced. Starting from the bottom left of the figure and working out way up, the branch represents the possible results of the control qubit.

Figure 8: Representing a set of five merged surface codes as a 3D model. [36]

13.6 Exercises

Exercise 53. ${ }^{5}$ Write out the explicit simultaneous +1 eigenstates of a distance 3 surface code.
I didn't expect to recover from my second operation but since I did, I consider that I'm living on borrowed time. Every day that dawns is a gift to me and I take it in that way. I accept it gratefully without looking beyond it. I completely forget my physical suffering and all the unpleasantness of my present condition and I think only of the joy of seeing the sun rise once more and of being able to work a little bit, even under difficult conditions.
-Henri Matisse
This is a code because the real problem is the prevention of war. —J. Robert Oppenheimer (1955) [37]

14 Syndrome analysis

Once we've implemented the surface code on physical hardware, ${ }^{4}$ we can perform computations in an error-tolerant fashion. To do this, we must perform sequential measurements of the stabilizers: each measurement is known as a round, denoted as r. The data collected from each round is used to compute syndrome measurements, which tell use where errors occurred on the circuit; these data are streamed into a classical computer for further syndrome analysis.

14.1 Pauli frames

Imagine a quantum computer with four qubits, $\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$, and a single round of stabilizer measurements are taken, wherein a Z error is detected on q_{1}, and an X error is detected on q_{4}. The corresponding Pauli frame for this set of detection events is $I X I Z$. This information is used in each round to update the logical Pauli frame. When an odd number of X or Z errors have been detected in a given physical Pauli frame, the logical Pauli frame is updated to reflect the presence of a logical X error.

As demonstrated in Figure 9 a $\left|0_{L}\right\rangle$ state, then applying a logical X operator. This transformation occurs from left to right, since it's touching the dark plaquettes; when an X error has been tracked, we note that in the logical Pauli frame, and update $\left|0_{L}\right\rangle$ to $X\left|0_{L}\right\rangle=\left|1_{L}\right\rangle$. The green boxes are known as templates: a single 4 x 4 template in the center containing the square plaquettes, as well as 1 x 4 templates containing the "triangular" halfmoon plaquettes. [36]

[^3]

Figure 9:

14.2 Minimum weight perfect matching (MWPM)

A quantum computer can't do its job alone; it needs a classical co-processor to analyze its measurement results. MWPM is one such classical algorithm, which analyzes detection events to correct errors.

14.2.1 Detection events

A detector is a parity of syndrome measurement bits in a quantum error correction circuit. That means we can measure a handful of syndrome outcomes, add them up to find parity of the result modulo 2. A detection event is a detector measurement of outcome 1 .

14.2.2 The algorithm

MWPM is a graph algorithm that maps a graph $G=(V, E)$ to an edge subset $E^{\prime} \subseteq E$, whereby E^{\prime} is a perfect matching of E, such that

$$
\begin{equation*}
W=\sum_{e \in E^{\prime}} w(e) \tag{46}
\end{equation*}
$$

is minimized. E^{\prime} is a perfect matching if each vertex in V is connected to exactly one edge in E^{\prime}.

14.2.3 Putting it all together

MWPM for TQEC decomposes the error model by X and Z errors. Each detection event is modeled as a vertex in G, and for each edge $e=(u, v)$, $w(e)$ indicates the prior probability of detection event u flipping v. Thus, E^{\prime} tells us which chain of detection events we can trust most when correcting errors in a circuit execution.

14.2.4 Implementation concerns

Minimizing W is a challenging problem; an intuitive approach is to use Dijkstra's algorithm on G repeatedly. More involved approaches utilize physical data to prune away unlikely candidates for the matching, creating a more focused search space, paving the way for amortized $\mathrm{O}(1)$ execution of the algorithm in parallel [38]. The sparse blossom approach utilizes this pruning, as well as linear programming, to performing the algorithm in microsecond time on a single core. [39]

14.3 Exercises

Exercise 54. おS Show that the naive implementation of MWPM performs in $\Omega(|V| \log |V|)$ time.

Exercise 55. $\begin{gathered}\text {. } \\ \text { H Prove that, given a reasonable set of physical assump- }\end{gathered}$ tions, MWPM can be performed in $\Theta(1)$ time on average.

As regards the specification of the conditions for any well-defined application of the formalism, it is moreover essential that the whole experimental arrangement be taken into account.
-Niels Bohr (1949) [40]

15 Software applications

15.1 Stim

Stim is an open-source Python library that offers an API for simulating surface codes, wherein the user supplies parameters such as d, r, and error probability p. It generates circuits in a format per a custom language reminiscent of OpenQASM [41]. The library was designed with real-time performance in mind, making it useful for researchers and developers in the field [42]. The following code snippet illustrates a basic use case:

```
stim.Circuit
    .generated
    (
    "surface_code:rotated_memory_z",
    distance=d,
    rounds=r,
    after_clifford_depolarization=p,
    before_round_data_depolarization=p,
    before_measure_flip_probability=p,
    after_reset_flip_probability=p
    )
```

Stim is the highest-performing surface code simulator available; its core functionality is written in $\mathrm{C}++$. It exports files to a special format as a pictorial representation of the circuit. Gidney has developed other quantum circuit editors for the browser such as Crumble [43] and Quirk [Quirk].

You should really just use Stim.
—Unknown (2023)

15.2 TQEC. app

This user interface allows the user to specify a qubit unit cell Q, which is a Gaussian lattice generator laid out on a grid with integer lengths, and a set of grid spaces that contain each qubit in Q. The app then populates the viewport with qubits according to the unit cell; the user may then specify plaquettes, along with a canonical-form circuit within them. The backend service will utilize Stim to help build and validate the users' circuits. The author first envisioned this very work as an "instruction manual", but that
will materialize as written and video walkthroughs of the app. ${ }^{5}$ Figure 10 illustrates the creation of a circuit using the app.

Figure 10: Editing a plaquette using TQEC.app. The red and black qubits are laid out according to the standard two-dimensional unit cell. Each plaquette contains an ancillary (measure) qubit, and some number of $C X$ and $C Z$ qubits, which comprise a canonical-form circuit [TQEC.app].

Everyone seems to want user interface but they are not sure whether they should order it by the yard or by the ton.
—Alan Kay (1996) [45]

[^4]
16 Further reading

For summation notation, defined precisely, refer to [46], chapter 2. For the axioms of probability theory, refer to [47]. I also recommend Daniel Litinski's PhD thesis on quantum error correction.

Computers are made up of logic gates that stretch out to the horizon in a vast numerical irrigation system.
-Stan Augarten (1983) [48]
I don't think these are the errors that the title was referring to. —Jarrett Green (2023) [49]

17 Works cited

1. Vogel, O. MusiXTEX: Using TEX to write polyphonic or instrumental music (2023).
2. Kay, A. Tutorial on the Quantikz Package 2023. arXiv: 1809.03842 [quant-ph].
3. Mina Aganagić Costin Popescu, J. H. S. Gauge-invariant and gaugefixed D-brane actions. Nuclear Physics B(1997).
4. Tolkien, J. R. R. The lord of the rings (Allen \& Unwin London, 1954).
5. Knuth, D. E. The Art of Computer Programming. Fundamental Algorithms ISBN: 9780201896831 (Addison-Wesley, 1997).
6. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79. ISSN: 2521-327X(Aug. 2018).
7. Google. Suppressing quantum errors by scaling a surface code logical qubit. Nature614, 676-681(2023).
8. Fowler, A. G. TQEC design automation Coursera course 2024. https: //bit.ly/3x0hIg7.
9. Nielsen, M. A. Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
10. Yanofsky, N. S. Mannucci, M. A. Quantum Computing for Computer Scientists (Cambridge University Press, 2008).
11. Lidar, D. A. Brun, T. A. Quantum error correction (Cambridge university press, 2013).
12. Beezer, R. A. A First Course in Linear Algebra ISBN: 0984417559 (Congruent Press, 2012).
13. Hamilton, W. Elements of Quaternions (Longmans, Green, \& Company, 1866).
14. Box, G. E. P. Science and Statistics. Journal of the American Statistical Association 71, 791-799.
15. Nahin, P. J. An Imaginary Tale: The Story of $\sqrt{-1}$ (Princeton University Press, 2008).
16. Euler, L. Elements of Algebra ISBN: 9781847286475 (Lulu Press, Incorporated, 2006).
17. Wigner, E. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications on Pure and Applied Mathematics13(1960).
18. Wolrfram, S. A New Kind of Science (2002).
19. Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik33, 879-893(1925).
20. Klein, F. Ackerman, M. Development of Mathematics in the 19th Century (Math Sci Press, Brookline, Massachusetts, 1979).
21. Judson, T. W. Abstract Algebra: Theory and Applications (Orthogonal Publishing L3C, 2022).
22. Kitaev, A. Anyons in an exactly solved model and beyond. Annals of Physics321, 2-111. ISSN: 0003-4916(Jan. 2006).
23. Dirac, P. A. M. Unitary representations of the Lorentz group 1944.
24. Hadamard, J. An Essay on the Psychology of Invention in the Mathematical Field(1945).
25. Bell, E. T. Men of Mathematics (1986).
26. Kranz, G. Failure is Not an Option. Mission Control from Mercury to Apollo 13 and Beyond (Simon \& Schuster, 2001).
27. Feynman, R. P., Leighton, R. B. Sands, M. The Feynman Lectures on Physics. Quantum Mechanics chap. 2 (Basic Books, 1965).
28. Shor, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing 26, 1484-1509. ISSN: 1095-7111(Oct. 1997).
29. Toffoli, T. Reversible Computing(1980).
30. Clifford, W. K. Applications of Grassmann's Extensive Algebra. American Journal of Mathematics1, 350-358(1878).
31. Bell, J. S. On the einstein podolsky rosen paradox. Physics1, 195(1964).
32. Fowler, A. G., Whiteside, A. C., McInnes, A. L. Rabbani, A. Topological Code Autotune. Physical Review X2. ISSN: 2160-3308(Oct. 2012).
33. Schrödinger, E. What Is Life? (Cambridge University Press, 1944).
34. Fowler, A. G., Mariantoni, M., Martinis, J. M. Cleland, A. N. Surface codes: Towards practical large-scale quantum computation. Physical Review A86. ISSN: 1094-1622(Sept. 2012).
35. Fowler, A. G. Gidney, C. Low overhead quantum computation using lattice surgery. arXiv: 1808.06709 [quant-ph] (2019).
36. Fowler, A. G. Logical CNOT 2024.
37. Oppenheimer, J. R. The Open Mind (Simonand Schuster, 1955).
38. Fowler, A. G. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average $O(1)$ parallel time. arXiv: 1307.1740 [quant-ph] (2014).
39. Higgott, O. Gidney, C. Sparse Blossom: correcting a million errors per core second with minimum-weight matching . arXiv: 2303.15933 [quant-ph](2023).
40. Bohr, N. Atomic Physics and Human Knowledge (1958).
41. Gidney, C. The Stim Circuit File Format (.stim) https://bit.ly/ 43sFEVn.
42. Gidney, C. Stim: a fast stabilizer circuit simulator. Quantum5, 497. ISSN: 2521-327X(July 2021).
43. Gidney, C. Crumble https://algassert.com/crumble.
44. Topological quantum error correction tools https://bit.ly/43sFEVn.
45. Kay, A. C. The early history of Smalltalk chap. History of programming languages-II (TODO, 1996).
46. Graham, R. L., Knuth, D. E. Patashnik, O. Concrete Mathematics: A Foundation for Computer Science2nd (Addison-Wesley, Reading, MA, 1994).
47. Knuth, D. E. The Art of Computer Programming, Volume 4B: Combinatorial Algorithms, Part 2 ISBN: 9780137926817 (Addison-Wesley, 2022).
48. Augarten, S. State of the Art: A Photographic History of the Integrated Circuit ISBN: 0899191959 (Ticknor \& Fields, 1983).
49. Green, J.https://www.ign.com/articles/quantum-error-review(2023).
50. The Lord of the Rings Special Extended DVD Edition: The Appendices 2003.

It's never going to be perfect; you simply run out of time.
-Peter Jackson (2003) [50]

[^0]: ${ }^{1}$ https://smburdick.github.io

[^1]: ${ }^{2}$ Also known as a surface code in the literature. Confusingly, other kinds of codes are referred to as such; think in terms of polymorphism.

[^2]: ${ }^{3}$...that the oscillating electron behaves like a free electron compared to light, which has a much shorter wavelength than all the natural oscillations of the system. (Googletranslated)

[^3]: ${ }^{4}$ Not a trivial task, of course, but we'll later see how we can simulate one.

[^4]: ${ }^{5}$ The site is under active development, with new features are added on a regular basis. [44]

