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α alpha
β beta
δ delta

Γ, γ gamma
Θ, θ theta
ϕ,φ phi
ψ psi
σ sigma

Ω, ω omega
∣ψ⟩ physical qubit

∣ψϕ⟩ = ∣ψ⟩ ∣ϕ⟩ qubit concatenation
∣ψL⟩ logical qubit
⟨ϕ∣ψ⟩ inner product
(α
β
) two-dimensional state vector

C(n, k) binomial coefficient: “n choose k”
∈ set membership
⊗ Kronecker product
{} empty set
Z integers
R real numbers
C complex numbers
i imaginary unit

√
−1

Σ discrete summation

∫ ba Riemann integral
I identity matrix

X,Y,Z Pauli matrices
H Hadamard gate
∣ ⋅ ∣ set cardinality
× Cartesian product; dimensionality
∂A boundary of the point set A

⋃,⋂ union, intersection of sets
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For the computer science community.

I graduated from the library when I was twenty-seven. I discovered that the
library is the real school.
—Ray Bradbury
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1 Preface
Contemporary quantum computer hardware is notorious for being error-
prone. To enable its scalability and general accessibility, error correction
techniques must be applied; one such method, known as topological quantum
error correction (TQEC), reliably detects minute hardware errors. This work
offers an informal theoretical introduction to TQEC, followed by a discussion
of classical software that supports it.

This work targets readers with an upper-undergraduate or graduate rank
in computer science, and assumes background familiarity with high school
algebra, geometry and trigonometry, summation notation, asymptotic anal-
ysis (big-O), and graph algorithms. You may think this work as a toolbox
that you can reopen at any point in your quantum error correction work;
reading it all the way through in one sitting would be rather tedious.

The only way to truly add a tool to your kit is to practice using it. You
will find various exercises strewn about this text, with approximate degrees
of spiciness indicated:

• ������: Immediately clear to a careful reader.

• �����: Should take a few minutes of writing on scratch paper, or
searching through other parts of the text.

• ����: A good candidate for a take-home exam problem.

• ���: A research endeavor of indeterminate scope.

Major results, which may or may not be proven in this text, are demar-
cated as theorems ; intermediate results that are important in their own right
are called lemmas.

To eat well, I always disagree with critics who say that all restau-
rants should be fine dining. You can get a Michelin star if you
serve the best hamburger in the world.
—David Chang (2020)
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2 To the student
This work is written for you: a computer science student interested in quan-
tum error correction, and willing to learn a little math along the way. Due
to the current job landscape, it’s a somewhat common misconception that a
physics degree is a prerequisite to quantum computing. The reality is that
you do not need one to contribute to this burgeoning field.

The goal of this work is to enable such contributions. Think of it as a
map: mathematically defined, and aiming to be useful; since the terrain is
not the map; the author intends to regularly update this work to the best of
their ability.

If you’ve ever written two nested for loops that together add up lists of
numbers of length m, for 1 ≤ m ≤ n, then at some point you may have been
shown the mathematical way of explaining it:

n

∑
k=0

k = O(n2) (1)

Most likely, the math you learned beforehand was meant to teach you the
fundamentals of calculus, which only uses such machinery in more advanced
contexts. I’d like to assure you that the complexity of the mathematical
statements herein are no more complex than equation and have a similar
flavor. In conclusion, this is not a quantum mechanics text; it is a computer
science text through and through.

3 To the instructor
It is the author’s hope that this work provides a “boots on the ground” per-
spective into the realm of topological quantum error correction, and quantum
computing in general. The upper-rank undergraduate or graduate student
new to quantum computing should benefit from the clear and concise lan-
guage used in this work.

4 Acknowledgements
The author would like to thank Unitary Fund, for their generous support
of the TQEC open–source project; Austin Fowler, for his mentorship, and
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for drawing many of the figures used in this work; and those who have con-
tributed to TQEC.app.

This is only possible when there are no global topological obstruc-
tions to this identification.
—Mina Aganagić, Costin Popescu, and John H. Schwarz [3]

An author cannot of course remain unaffected by the sum of his
experiences...
—J. R. R. Tolkien (1954) [4]

It is our chief aim to entertain, then inform...
—Card Walker (1982)

Another good debugging practice is to keep a record of every mis-
take made. Even though this will probably be quite embarrassing,
such information is invaluable to anyone doing research on the
debugging problem, and it will also help you learn how to reduce
the number of future errors.
—Donald Knuth (1997) [5]
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5 Contribution guidelines
This is a work by one person, but could not have been possible without
many; to list them all would simply be impossible. Moreover, as time goes
on, I suppose members of the community will offer error corrections of their
own. Maintaining this work as an open-source project is simply not possible,
due to copyright concerns; however, to acknowledge any errors found in the
work, one TQECent will be issued as payment for correctly identifying an
error. Technical authors frequently offer bounties in the form of handwritten
checks, or an equivalent exchange. To be more environmentally friendly,
secure, and open to all, this work proposes a new cryptocurrency, TQECoin;
a single block of which shall be more than ten times less carbon intensive
than mailing a handwritten check via USPS.

Back-of-the napkin calculations reveal that the marginal carbon footprint
of writing and mailing a check in the United States is 20g of CO2. Assume
that an Intel i7 8th gen/Nvidia RTX 2060 Super based computer can mine a
single TQECoin block in 24 hours and performs no other tasks. This process
uses roughly 2g of CO2, making it viable to produce 100 TQECents at the
prescribed rate. The blockchain or any other data needn’t be stored on a
third-party service. Out of fairness, I cannot offer any other form of reward;
if you would like to contribute without holding any cryptocurrency yourself;
I will keep your cent and not sell it. All contributions will be listed on my
website1 for quick reference.

Happy hunting!

—S. M. B.

Harambee (“Let us all pull together”)
—National motto of Kenya

Everything is difficult in the beginning.
—Chinese proverb

1https://smburdick.github.io
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6 Introduction
Intense hardware error rates severely limit the practicality of quantum com-
puters [6]. Research labs such as Google Quantum AI have made significant
strides towards error tolerance in recent years, having produced a logical
qubit prototype in 2023. However, Google does not expect to have a sin-
gle long-lived logical qubit, comprising on the order of 1000 physical qubits,
until 2025 at the earliest [7]. While these figures may sound discouraging,
several promising avenues for correcting qubit errors remain; this work dis-
cusses improved noise resilience through topological quantum error correction
(TQEC).

This work is organized as follows. We begin by introducing the key math-
ematical concepts for understanding TQEC, such as Pauli errors, stabilizers,
and planar codes.2 Next, we discuss syndrome analysis, a set of classical
algorithms used to fully implement the error model. To the author’s knowl-
edge, this work is the first survey of TQEC written with the chief aim of
assisting those with a computer science background interested in the domain
of quantum error correction. It is our intention to develop a practical and
ground-up understanding of the planar code.

The initial sections of this work provide some background for readers
interested in quantum error correction, but are perhaps unfamiliar with the
quantum computing notation, or in need of a mathematical refresher. For a
deeper look into the basics, a free Coursera course is under development [8],
and two helpful textbooks are [9] and [10]. For a deeper dive into the field
of quantum error correction, see [11]. It is the author’s hope that this work
will serve as a learning tool for those interested in contributing to TQEC
through further research and development.

2Also known as a surface code in the literature. Confusingly, other kinds of codes are
referred to as such; think in terms of polymorphism.
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7 Mathematical preliminaries
I strongly recommend reviewing the table of contents and circling the names
of sections that are unfamiliar to you, and focusing on those.

7.1 Set theory

The most basic mathematical object is called a set, which is simply a collec-
tion of distinct objects. For example,

{△,42, e} (2)

is a set. It’s not a terribly useful one. The cardinality of a set, denoted ∣ ⋅ ∣,
The most useful set of all is possibly Z, which are commonly known as

“whole numbers” but are better known within the world of coding as integers :

Z = {. . . ,−2,−1,0,1,2, . . .} (3)

Exercise 1. ������Show that the natural numbers {1,2,3 . . .} = {∣a∣ ∶ a ∈ Z}.
Another surprisingly useful set is the empty set {} (sometimes denoted

∅), which contains no elements, that is, ∣{}∣ = 0.

7.1.1 Unions and intersections

The union of two sets is defined as:

A⋃B = {a ∶ a ∈ A or a ∈ B}. (4)

The intersection is
A⋂B = {a ∶ a ∈ B and a ∈ B} (5)

Exercise 2. �����(Addition principle) Show that if A⋂B = {}, then

∣A⋃B∣ = ∣A∣ + ∣B∣. (6)

7.1.2 Cartesian products

The Cartesian product of two sets A and SB is defined as

A ×B = {(a, b) ∶ a ∈ S1, b ∈ S2}. (7)

Sometimes, we denote A ×A as A2.

Exercise 3. �����Show that ∣A ×B∣ = ∣A∣∣B∣.
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7.2 Linear algebra

We have tried to make this text as helpful as possible with this
transition. Every definition is stated carefully, set apart from the
text.
—Robert Beezer (2012) [12]

7.2.1 Matrices

Matrices are multi-dimensional arrays of numbers. For our purposes we shall
focus on 2x2 matrices, written as:

A = (a b
c d
) . (8)

You can multiply two matrices together, using the formula

A1A2 = (
a1 b1
c1 d1

)(a2 b2
c2 d2

) = (a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

) .

Importantly, for any matrices A and B, you should expect that AB ≠ BA;
they are non-commutative with respect to multiplication. Notably, A and B
can also be anti-commutative, which would mean AB = −BA. We’ll now defy
your expectations by showing off a widely-used matrix known as the identity
matrix :

I = (1 0
0 1
) .

Multiplying any matrix A by I produces A:

AI = IA = A

Exercise 4. ������Compute (1 2
3 4
)(5

6
) .

Exercise 5. �����The inverse of a 2x2 matrix is defined as

A−1 = 1

ad − bc
( d −b
−c a

) (9)

Show that AA−1 = I.

14



Exercise 6. �����Show that

(cos θ − sin θ
sin θ cos θ

)

rotates a vector in R2 by θ counterclockwise.

Exercise 7. ����The Hadamard product, frequently used in machine learn-
ing applications, and denoted here as (⋅⋅), is the component-wise product of
two matrices, such that (AB)i,j = (A)i,j(B)i,j for all valid i and j. Write an
equation that explicitly defines the elements of (AB).

It is the world that has been pulled over your eyes to blind you
from the truth...
—Morpheus, The Matrix (1999)

7.2.2 Vectors

A vector is a one-dimensional array. We focus on vectors with two numeric
entries α and β, denoted

∣ψ⟩ = (α
β
). (10)

The symbol ∣⋅⟩ is known as a ket in quantum computing literature. We can
multiply a vector by a numeric value λ like so:

λ ∣ψ⟩ = λ(α
β
) = (λα

λβ
) (11)

Finally, we can multiply a matrix times a vector, which gives back a new
vector:

(a b
c d
)(α
β
) = (aα + bβ

cα + dβ
) (12)

Exercise 8. ������Compute

(2 3
5 6
)(7

9
).
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7.2.3 Vector spaces

This is formally defined as a set X that’s associated with a function f ∶
X → X such that f is linear, meaning f(ax) = af(x) for all scalars, and
f(x + y) = f(x) + f(y), for all x, y ∈ X. For example, the set of all 2x2
matrices equipped with matrix addition is a vector space.

Exercise 9. �����Find a mathematical operator that shows that C2 is a
vector space.

7.2.4 Basis vectors

If any set of state vectors V can be written in terms of a linear summation
of elements of a set of vectors B, then we say that B is a basis of, or spans,
V . For example, the Euclidean basis

{[1
0
] , [0

1
]} (13)

can construct any vector in C2. If ∣B∣ is minimal, we say B is orthonormal.

Exercise 10. �����What is a basis for the vector space of all 2x2 matrices?

The anharmonic co-ordinates and equations employed, for the
plane and for space, were suggested to the writer by some of his
own vector forms; but their geometrical interpretations are as-
signed.
—William Rowan Hamilton (1866) [13]
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7.3 Probability theory

Rather than rigorously defining the axioms of probability, let’s set down a
few definitions. A probability is a real number p, restricted to the range
[0,1], that represents the outcome of a particular event E in a controlled
setting where Ω is the set of all possible events. For example, when a fair
coin is tossed, we have Ω = {HEADS,TAILS}, and p(HEADS) = p(TAILS) = 1/2.
If we wanted to get heads all the time, we might add a little more weight to
the underside; experimental data might show us that p(HEADS) has increased
to 2/3; we can deduce that p(TAILS) has decreased to 1/3 by this formula:

∑
E∈Ω

p(E) = 1 (14)

If two events A and B are independent, then the probability of both hap-
pening is p(A)p(B), and the probability of either of them happening is
p(A) + p(B).

Exercise 11. �����What is the probability of a monkey correctly typing a
syntactically correct Hello, World program on its first try?

Exercise 12. ����Prove the law of total probability: that for any discrete
set of events comprising A and Bn (n ≥ 0), we have P (A) = ∑nP (A⋂Bn).

Exercise 13. ����The binomial theorem states that, for any n ≥ 0,

(x + y)n =∑
k≥0

C(n, k)xn−kyk, (15)

where C(n, k) = n!
(n−k)!k!

• For which values of x and y can we compute pn?

• If p represents a probability, what is the meaning of the binomial theo-
rem? (Hint: it has to do with how C(n, k) is interpreted.)

• What happens if we let n go to infinity?

Exercise 14. ����The expectation value of a real-valued function f(x) is
denoted

µ(f) = ∫
∞

−∞
xf(x)dx. (16)

• What is the expectation value of e−x2?

17



• Suppose we are given a complex-valued function f(z). What function
would you need to multiply the it by to produce a real-valued function
f? Use your answer to compute µ(f).

Since all models are wrong the scientist must be alert to what is
importantly wrong.
—George E. P. Box (1976) [14]
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7.4 The field of numbers

With those exciting definitions out of the way, it’s time for a brief an-historic
interlude into the realm of number fields. Recall that the symbol ⊂ is a binary
operator pronounced “subset”. Ready?

N ⊂ Z ⊂ Q ⊂ R ⊂ C (17)

The American high school mathematics curriculum requires you to learn
about all of these; a working mathematician would tell you, though, that
all of these sets have the same structure. So how do we make sense out of
Equation 17? Working from left to right, we have N, the “natural” numbers,
1,2,3 . . .. The integers are a little more interesting, since they give us 0 and
negative naturals. Then we get the “rational” numbers Q, for “quotient”:
these are analogous to IEEE-754 floating point numbers. So what is R?

The reality is that there is no good definition for R: the “real” numbers.
At this point, we leave behind the comfortable chair of software development
and approach the chalkboard of a physics laboratory. A real number can be
most succinctly defined as the result of a measurement. For example, let’s
say you wanted to measure the weight of a basketball, without bothering to
order one (and possibly a bathroom scale) from Amazon. Your gym class
experience would tell you that the radius is about one foot (or one-third of a
meter). A quick search would tell you the volume of a sphere is 4πr2, giving
you an exact answer of 4π/9 m3.

But there’s that finicky number in there: π. What is its nature? Is it
a rational number? Somebody in ancient Greece didn’t think so, and for
that they paid the ultimate price. (Yes, this really happened. Kind of.)
After the funeral, the Athenian academicians convened to introduce a new
set of numbers to reconcile themselves to their confounding reality: there
are numbers that transcend human intuition. Since “transcendent” hadn’t
been coined yet, they ended up going with “real,” since they came up with
it by solving a geometry problem (the ratio of a circle’s circumference to a
diameter).

In fact, the ancient Greeks only knew π as an integer. Only in 1400 was it
known to ten places, and today it can be calculated to an arbitrary precision
with fancy formulae such as

1

π
=
√
2

2

∞

∑
k=0

(4k)!(1103 + 26390k)
k!4(396)4k

, (18)
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discovered by Ramanujan just over a century ago. What a time to be alive!

Exercise 15. ������Show that Z = {±n ∶ n ∈ N}⋃{0}

Exercise 16. �����Show that R = C ∖ {ai ∶ a ∈ R}.

The Moon is handed down by memory to be eleven thousand
yojanas in diameter. Its peripheral circle happens to be thirty
three thousand yojanas when calculated. (Bhishma Parva of the
Mahabharata, 6.12.40)
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7.5 Complex variables

You may remember being asked to find the solutions to polynomial equations,
such as x2 + 1 = 0. To solve for x, simply subtract 1 from both sides and...
take the square root of both sides. We’re left with x = ±

√
−1. (The ± is added

since squaring a negative number is positive.) Mathematicians struggled at
this juncture for centuries, but in the early 1800s settled on a new symbol to
indicate the “imaginary” unit: i =

√
−1 [15].

Complex numbers are thus compactly defined as:

C = {a + bi ∶ a, b ∈ R, i =
√
−1}. (19)

Just like real numbers, complex numbers can be added, multiplied, and so
forth to produce new complex numbers.

Sometimes, we care about the distance between a complex number and
the origin (0,0). The modulus of a complex number z = a + bi is equal to

∣z∣ =
√
a2 + b2. (20)

Geometrically, it is the distance from the origin (0,0) to the point (a, b) in
Cartesian coordinates, as illustrated in Figure 7.5.

R(z)θ

I(z)

−1 1 2 3

1

2

3
z0 = 1 + 3i

∣z0∣ =
√
12 + 32 =

√
10

An illustration of the complex modulus
(denoted ∣z0∣) against the complex plane; the horizontal axis represents the
“real part” of a complex number z, denoted R, while the horizontal axis

represents the imaginary part, denoted I.

The complex conjugate of z = a + bi is z∗ = a − bi; simply flip the + or – sign
in front of the imaginary part. The argument of z is the angle subtended by
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the line of length r = ∣z∣ and the positive R axis; in figure 7.5, it’s denoted as
θ. We may now define a complex number in its polar form:

z = reiθ = r(cos θ + i sin θ) (21)

where r = ∣z∣, and e = 2.71828 . . . is a very special number. Letting r = 1 and
θ = π, we’re left with Euler’s identity

eiπ + 1 = 0, (22)

onto which many have ascribed an aesthetic quality; our goal is to put it to
use in describing qubits and gate actions.

Exercise 17. ������Show that zz∗ = ∣z∣ for any z ∈ C.

Exercise 18. �����Prove de Moivre’s theorem: for any z ∈ C and n ∈ N,

zn = rn(cosnθ + i sinnθ) (23)

Exercise 19. ����Prove the well-known identity

∫
∞

−∞
e−x

2

dx =
√
π.

Hint 1: Multiply the left-hand-side by itself. Hint 2 (for habanero lovers):
use Cauchy’s integral formula: ∮C f(z)dz = 0.

Exercise 20. ����Prove that if

Γ(z) = ∫
∞

0
tz−1e−tdt R(z) > 0

then Γ(z) = zΓ(z − 1).

Exercise 21. ����The Taylor series of the real-valued function ex is given
as

ex = lim
n→∞

n

∑
k=0

xk

k!
(24)

• If x,n ∈ N, how can you interpret the right-hand side?

• Is the series still valid for x ∈ C? How do you know?
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We must therefore conclude that the square root of a negative
number cannot be either a positive number or a negative number,
since the squares of negative numbers also take the sign plus: con-
sequently, the root in question must belong to a entirely distinct
species of numbers, since it cannot be ranked either among posi-
tive or negative numbers.
—Leonhard Euler (1770) [16]

Indeed, if a mathematician is asked to justify his interest in com-
plex numbers, he will point, with some indignation, to the many
beautiful theorems...
—Eugene Wigner (1960) [17]
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8 Qubits defined
In the quantum computing literature, ∣ψ⟩ and sometimes ∣ϕ⟩ are often used
to denote quantum bits, or qubits. Equation 10 is a standard (vector) repre-
sentation of a qubit, where α,β ∈ C; therefore, ∣ψ⟩ is a vector in the vector
space C2.

On occasion, we must multiply two qubits together: we write this as

∣ψ⟩ ∣ϕ⟩ = (u1
u2
)(v1
v2
) =
⎛
⎜⎜⎜
⎝

u1
u2
v1
v2

⎞
⎟⎟⎟
⎠

(25)

which can be thought of more as a concatenation per se, and we’ll usually
keep it as ∣ϕ⟩ ∣ψ⟩ or just ∣ϕψ⟩ when we work on actual circuits.

Exercise 22. �����Calculate CX ∣ϕ⟩ ∣ψ⟩ .

This is how you are to build it: The ark is to be three hundred
cubits long, fifty cubits wide and thirty cubits high. (Genesis
6:15)

8.1 Superposition and basis vectors

In quantum computing, complex numbers serve a special purpose: they allow
us to write out a qubit ∣ψ⟩ as

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ (26)

where α,β ∈ C, which are known as the probability amplitudes of ∣ψ⟩, meaning
that the probability of measuring ∣ψ⟩ in the ∣0⟩ state is ∣α∣2 (and similarly for
∣1⟩). By the definition of probabilities, we have

∣α∣2 + ∣β∣2 = 1. (27)

A common question is: if qubits represent something physical, why do
we use complex numbers? The reason has to do with the fact that real-
valued probabilities p are limited to the range 0 ≤ p ≤ 1. We may want to add
probabilities together, but we can’t allow the total probability to exceed one.
Using complex numbers allows us to add and subtract probability amplitudes
instead.
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The reality is that many of the values of α and β we use initially within
quantum computing are real numbers, but some of them are complex-valued,
so we define it this way to cover all the cases. (This still works since the reals
are a subset of C.)
∣0⟩ and ∣1⟩ are together known as the Z basis vectors; equation (26) de-

scribes the superposition of ∣ψ⟩ in Z basis vectors.

Exercise 23. ������Show that the probability of measuring ∣1⟩, when ∣+⟩ is
projected into the Z-basis, is 1/2.

Mathematics is the foundation of all exact knowledge of natural
phenomena.
—David Hilbert (1900) [18]

8.2 Eigenvalues and eigenstates

For a given matrix A and state vector ∣ψ⟩, the eigenvalue λ ∈ C is defined as

A ∣ψ⟩ = λA

By this definition, we can say that ∣ψ⟩ is the λ-eigenstate of A.

Exercise 24. �����Find the eigenvalues and eigenstates of

(2 8
1 4
) .

Exercise 25. ����Find the eigenvalues and eigenstates of X and Z.

...dais sich das schwingende Elektron gegeniiber Licht, das viel
kurzwelliger ist sis alle Eigenschwingungendes Systems, wie ein
freies Elektron verhlt.3
—Werner Heisenberg (1925) [19]

3...that the oscillating electron behaves like a free electron compared to light, which has
a much shorter wavelength than all the natural oscillations of the system. (Google-
translated)
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9 Algebraic topology
The goal of this section is to introduce the mathematics used in advanced
applications of TQEC, starting with defining the planar code precisely; my
recommendation is to keep the key definitions of this section in your back
pocket.

9.1 Groups

A group is a mathematical object that associates a set G with a binary
operator. Typically we do not assign any particular symbol to this operator,
akin to numeric multiplication. Formally, the operator maps G to G ×G to
G, and obeys these three properties:

• (Associativity) For any a, b, c ∈ G, we have a(bc) = (ab)c.

• (Identity) There exists an e ∈ G such that, for any a ∈ G, we have
ae = ea = a. e is referred to as the identity element of G.

• (Inverses) For all a ∈ G, there exists its inverse a−1 such that aa−1 = e.

Crucially, not every group is commutative: we can’t assume that ab = ba.
A group that is commutative is known as an Abelian group. An example

of an Abelian group is the integers, paired with addition, written as (Z,+) ,
which we can write more compactly as Z. For any n ∈ N, the integers modulo
n is defined as

Zn = {a (mod n) ∶ a ∈ Z} (28)

Exercise 26. �����Prove that Zn is an Abelian group.

Exercise 27. �����Prove that R2 is a group.

Exercise 28. (Heisenberg group) Prove that for all a, b, c ∈ C, the set of
upper-triangular 3x3 matrices, represented as

⎛
⎜
⎝

1 a c
0 1 b
0 0 1

⎞
⎟
⎠

(29)

is a group under matrix multiplication.
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Exercise 29. ����The “special” unitary group SU(2) contains the set of all
2x2 unitary matrices with determinant 1. Prove that SU(2) is non-Abelian.

Thus, although Abel shared with many mathematicians a complete
lack of musical talent, I will not sound absurd if I compare his kind
of productivity and his personality with Mozart’s.
—Felix Klein (late 19th or early 20th cent) [20]

9.2 Generating subgroups

Given a group G, its subgroups H are denoted H ⊆ G due to the set re-
lationship. Importantly, H is a group in its own right, and has the same
identity element as G. The trivial subgroups of G are itself and the empty
set . If the elements of H can be put together such that you end up back with
G,Remembering that sets cannot, by definition, contain duplicate elements.,
we say that H generates G, or ⟨H⟩ = G.

Exercise 30. �����Prove that ⟨Z2⟩ = Z.

9.3 Group stabilizers

Given a group G, the set X, which is chosen such that gx is a valid product
for all g ∈ G and x ∈X, we say that X stabilizes G.

9.4 Gaussian lattices

The Gaussian integers are defined as Z[i] = {a + bi ∶ a, b ∈ C}. If you were
to plot the elements of Z[i] on the complex plane, you’ll see a nice dotted
structure; they form what is known as the Gaussian integers, or for our
purposes a lattice:
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1

i
2 + i

-2 - i

Figure 1: The Gaussian integers.

If we were to declare F ⊂ Z[i], we could systematically create an arbitrarily
large lattice ⟨F ⟩ that covers the entire plane.

Exercise 31. ������Prove that Z[i] is a group.

Exercise 32. �����Prove that F is a subgroup of Z[i].
Exercise 33. ����Prove that if ∣C∣ = ℵ1, then ∣Z[i]∣ = ℵ0. (Hint: have you
ever studied Hebrew?)

9.5 Equivalence classes

The structure of every possible Zn admits what is known as an equivalence
class of Z. To show what an equivalence class is, consider the example n = 3.
First, compute each element: that is easy enough, and we denote the sets as
A = {[0], [1], [2]}. Next, associate each a ∈ A with the set {a ± nk ∶ k ∈ Z}:

[0]→ {. . . − 3,0,3,6,9 . . .}
[1]→ {. . . − 2,1,4,7,10 . . .}
[2]→ {. . . − 1,2,5,8,11 . . .}

It is clear that the values of the association forms a partition of Z. Thus, A
is known as an equivalence class of Z.
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Exercise 34. ����Prove the above claim.

...the importance of applications [of groups] such as coding theory
and cryptography has grown significantly.
—Thomas W. Judson (2022) [21]

9.6 Topological braids

The group of n strands, denoted Bn, is a fundamental structure in topology,
and enables advanced contributions to our field. If you’ve ever played cat’s
cradle, you already know what a braid looks like: imagine holding out both
hands, and tying rubber bands between each of your four fingers; to illustrate
B4. Like it or not, each possible way you could have done that formulates a
group.

Your first question should now be: what do my fingers represent? The
identity is rather simple: your left pinkie connects to your right pinkie, and
so on, up to your index fingers. But let’s assume our cradle is a little more
interesting than that, and your baby brother comes over and tries to bend
your bands out of shape. Since you’re bigger than him, he only manages to
change ho9w the bands are interlaced, and they don’t slip from your fingers
at all. Since your brother has the same genes as you, his actions constitute
an identity operation.
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The next day, since it’s show-and-tell day in math class, you do the same
thing, but instead the professor comes over, and swaps two of the rubber
bands that connect to your right hand. He asks, “Johnny, is this what you
brought to class today?” Tim, who you could have sworn was just asleep,
blurts out “no, you’ve composed what he brought in with... umm...” The
prof replies, “that’s right, Tim, but what did I compose it with?”

Being an astute student, you grab some chalk and gets to work, only
you realized you forgot the book, so you begin deriving the composition
rule yourself... but since tomorrow is the final day of classes, you figure that
studying for the final exam will be a better use of your time. Now dissatisfied
with the public education system, you search in vain for a good book on the
subject of braid theory.

Okay, enough with the anecdote. The best way to fully understand the
structure of a braid is in terms of what’s known as a permutation group,
which are denoted as Sn. Permute is just a fancy term for mapping: for
example, our identity braid maps every key in the domain to itself, which we
can denote as

id = {1→ 1,2→ 2,3→ 3,4→ 4} (30)

since it’s our identity element. We can write this more succinctly as (1234).

Exercise 35. ������What does the permutation (4321) represent?

Exercise 36. ����Show that Sn is a group of order ∣Sn∣ = n!.

The actual braid group is a little more complicated than that, since it involves
equivalence classes and something called homotopy. Since other works treat
these issues better than the author ever could, I’m going to stop the math
bandwagon and switch over to computer science. I hope you enjoyed the
ride.

Exercise 37. ���Explain what we mean when we say “topological” quan-
tum error correction.

I suggested that topologically ordered states can serve as a physical
analogue of error-correcting quantum codes.
—Alexei Kitaev (2006) [22]
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10 Quantum gates and circuits
Quantum gates are the basic components of quantum circuits, which act on
individual qubits. Each gate is represented by a unitary matrix.

10.1 Unitary matrices

A unitary matrix U is any matrix that is self-adjoint. We denote the adjoint
with the “dagger" symbol, †, and get

UU † = UU. (31)

The adjoint of a matrix is also known as its conjugate transpose, which we
find by swapping the rows and columns (which yields the transpose), and
taking the conjugate of each element:

U † = (a b
c d
)

†

= (a
∗ c∗

b∗ d∗
) (32)

Every quantum computing operator, both as an error and a gate, is repre-
sented by a unitary matrix.

Exercise 38. ������Show that

γ (1 + i 1 − i
1 − i 1 + i) γ ∈ C

is unitary.

Exercise 39. �����Prove that if U is unitary, then U † = U−1 and U2 = I.

Of special interest are the unitary representations, in which the
linear transformations leave invariant a positive definite quadratic
form in the co-ordinates of a vector.
—Paul Dirac (1944) [23]
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10.2 Hadamard (H)

H

A Hadamard gate places a Z-basis qubit in superposition. Its matrix is
defined as

H = 1√
2
(1 1
1 −1) .

The plus and minus states, which comprise the X basis, are defined as:

∣+⟩ =H ∣0⟩ = ∣0⟩ + ∣1⟩√
2

∣−⟩ =H ∣1⟩ = ∣0⟩ − ∣1⟩√
2

Both the plus and minus states demonstrate superposition: if we were to
measure the qubit in either state, there’d be a 1/2 probability of measuring
a 0 or 1.

Exercise 40. ������Prove that H squares to the identity, meaning HH = I.

Exercise 41. �����Prove that H is unitary.

Exercise 42. �����Show that X ∣+⟩ = ∣+⟩.

It has been written that the shortest and best way between two
truths of the real domain often passes through the imaginary one.
—Jacques Hadamard (1945) [24]
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10.3 Controlled-X (CX)

CX is our first example of a two-qubit gate; the control bit remains un-
changed, but depending on its value, will “flip" the second gate, which is to
say, apply the X matrix:The row vectors are {∣−⟩ , ∣+⟩}.

X ∣ψ⟩ = (0 1
1 0
)(α
β
) = (β

α
) . (33)

A useful working definition of CX is by analogy to classical XOR, which
conditionally applies a NOT gate to the input line; hence the term CNOT
frequently used in the quantum computing to describe this circuit. It takes
two qubits, control and target.Look closely at the diagram: it’s a literal
target! If the control qubit is ∣0⟩, and the target qubit remains the same;
otherwise, it is set to ∣1⟩ .

The CX gate’s matrix representation is

CX =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

As with H, the matrix representation of CX is involutary and unitary.
The matrix representation of CNOT is the tensor product (or Kroenecker
product) I ⊗ X, which we can define more precisely asConfusingly, the ⊗
symbol is used to represent many kinds of “tensor products.” The full com-
putation of CNOT = I ⊗X by this definition is left as an optional exercise
to the reader; the author used a chatbot to produce the typesetting of this
formula. ,

A⊗B = (a1 a2
a3 a4

)⊗ (b1 b2
b3 b4

) =
⎛
⎜⎜⎜
⎝

a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4

⎞
⎟⎟⎟
⎠
. (34)

33



Exercise 43. �����Describe the difference between AB and A⊗B in terms
of gates and state vectors.

God made the natural numbers; all else is the work of man.
—Leopold Kronecker (late 19th cent.) [25]
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10.4 Controlled-Z (CZ)

This is a similar gate to CX, but there’s no target qubit. The action is rather
simple to understand: if the input qubits are equal to a ∣11⟩, the result state
is −a ∣11⟩ . For any a ∣ψ⟩ , where ψ ∈ {[00], [10], [01]}, a ∣ψ⟩ is left alone. The
matrix representation of CZ can be determined by I ⊗Z, where

Z = (1 0
0 −1) . (35)

The row vectors are obtained from the Z basis, where Z = {∣0⟩ ,− ∣1⟩}.

Exercise 44. ������Describe H in terms of X and Z.

Competent means we will never take anything for granted. We will
never be found short in our knowledge and in our skills. Mission
Control will be perfect.
—Gene Kranz (2001) [26]
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10.5 Measurement

M

A measurement gate projects a qubit into a particular basis. For example,
Mz projects a single qubit into the Z basis, meaning that it returns either
a (classical) 0 or 1. An Mx gate measures in the X basis, or {∣+⟩ , ∣−⟩} =
{H ∣0⟩ ,H ∣1⟩}. An Mz gate can therefore be written as

Mx ≡ H Mz .

We don’t need a matrix representation for M , since its operation is defined
by the hardware implementation.

Exercise 45. �����Prove the Z basis measurement identity.

We are talking about a predictive theory, not just measurements
after the fact.
—Richard Feynman (1965) [27]

10.6 Reset

R

This gate forces a qubit into the ∣0⟩ state.Physically, this is similar to a
measurement operation, but we wait around for the qubit to relax into the
∣0⟩ state.

Exercise 46. ���Explain why M and R are the least time-performant
quantum gates.

This workspace gets reset to 0 after each subroutine of our algo-
rithm, so we will not include it when we write down the state of
our machine.
—Peter W. Shor (1997) [28]
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10.7 T and S

T S

The T gate is defined as

T = (1 0
0 eiπ/4

) (36)

This is also referred to as the π/8 gate. This is due to it corresponding with a
π/8 rotation about the vertical axis of the Bloch sphere. A similarly defined
gate is S, also commonly denoted P (for “phase”):

S = (1 0
0 i
) (37)

Note that i = eiπ/2; consider (eiπ/4)2 = eiπ/2, meaning that eiπ/4 is the square
root of i; hence, we can write

T =
√
S, (38)

which tells us how we can build a T gate using S gates:

T ≡ S S

S and T are collectively referred to as phase shift gates, admitting a general
form

(1 0
0 eiφ

) (39)

where φ, called the phase angle, is of period 2π.Meaning that 0 ≤ φ < 2π,
constricting it to a single rotation about the unit circle.

Exercise 47. ������For which value of φ does the phase shift matrix square
to the identity?

I Tiresias, though blind, throbbing between two lives...
—T. S. Eliot, The Waste Land (1922)
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10.8 Toffoli

This gate is also referred to as CCNOT, since it takes two control bits; the
value of the target bit is flipped if both control bits are equal to ∣1⟩. Since
we’re considering three qubits and a new output state, we’ll need a tensor
product with four matrices to derive the matrix representation, which is
I ⊗ I ⊗ I ⊗X.

Exercise 48. ����Show how to construct an S gate using Toffoli gates.

With these constraints, one can satisfactorily deal with both func-
tional and structural aspects of computing processes; at the same
time, one attains a closer correspondence between the behavior
or abstract computing systems and the microscopic physical laws
(which are presumed to be strictly reversible) that underly any
concrete implementation of systems.
—Tommaso Toffoli (1980) [29]
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10.9 Clifford gates and universality

The Clifford gates comprise the set {CX,H,S}; combined with T , they’re
known as Clifford-T.

Theorem 1. Clifford-T gates build a universal quantum computer.

The proof of the theorem is beyond the scope of this work, but it’s useful
to have the definition and statement handy. The Toffoli gate will frequently
be included in this set due to its efficiency. One of the core justifications
for this claim is that each of these gates is reversible, since U−1 = U for any
unitary matrix U .This is impossible to achieve with a classical computer since
heat loss within the circuit destroys information. For example, an XOR gate
cannot be reversed; it combines two wires into a single one.

It contains, next, a generalization of them, applicable to any num-
ber of dimensions; and a demonstration that the algebra thus ob-
tained is always a compound...
—William K. Clifford (1878) [30]

Success is a lousy teacher. It seduces smart people into thinking
they can’t lose.
—Bill Gates
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10.10 Quantum circuits

What does a quantum circuit look like?ă
G

G

4
4

4
4

ˇ ˇ ˇ ˇ

˘

ˇ ˇ ˇ ˇ

ˇ ˇ 2

ˇ ˇ ˇ

ˇ`

ˇ

ˇ
ŐŐŐŐ
ˇ

ˇ ˇ ˇ ˇ

˘

Well, that’s not a bad answer.

H H

H H

Figure 2: A quantum circuit.

That’s better. But those who’ve had the fortune (or perhaps misfortune) of
studying music theory may draw a few key connections:

• Time moves from left to right.

• Each horizontal line has a relationship to the other.

• The lines are logically and temporally connected.

• The connections along the lines can be differently shaped.

Let’s explain the meaning for quantum computing, by examining the top
horizontal line of Figure 2.

• Time moves from left to right : The action occurs in the order top-left
dot, followed by the “H,” another dot, and so on.

• Each horizontal line has a relationship to the other. Each line repre-
sents a qubit.
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• The lines are logically and temporally connected. The lines between two
qubits represent actions that depend on both of them.

• The connections along the lines can be differently shaped. In this pic-
ture, we have two kinds of gates, some of which act on a single qubit
(H), and others act on two (another kind).

A person of any mental quality has ideas of his own. This is
common sense.
—Franz Liszt

10.10.1 The Bell pair

∣0⟩

∣0⟩

H

Figure 3: A circuit that entangles two qubits (prepared in the state ∣00⟩) into
a Bell pair

Figure 3 depicts our first example, which prepares a quantum state known as
a Bell pair (also known as an EPRNamed for Einstein, Podolsky, and Rosen,
for pointing out that this state suggests that “hidden information” leads to
quantum entanglement; decades later, Bell pointed out that quantum theory
is incompatible with such a notion [31]. pair): on the left, both qubits are
prepared in the ∣0⟩ state; at this point, the qubits are prepared as ∣ψ0⟩ = ∣00⟩.
Next, a Hadamard gate is applied to the first qubit, producing the state

∣ψ1⟩ = ∣+⟩ ∣0⟩ = (
∣0⟩ + ∣1⟩√

2
) ∣0⟩ = ∣00⟩ + ∣10⟩√

2

(Here, we’re treating kets as algebraic objects we can add and multiply with
complex numbers.) It’s important to write ∣ψ⟩1 in this manner, since we’re
about to apply a CX gate, which requires us to inspect both qubits simulta-
neously. After applying CX, we’re left the Bell pair

∣ψ2⟩ =
∣00⟩ + ∣11⟩√

2
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(Note that we don’t need to use the matrix representation of CX, which
is rather cumbersome.) The Bell pair is the simplest example of quantum
entanglement : it is only possible to measure 00 or 11, making the qubits
“entangled.”

Exercise 49. �����Prove that the circuit in Figure 12.3 corrects X ∣(α ∣0⟩ + β ∣1⟩)⟩ .

Consider a pair of spin one-half particles formed somehow in the
singlet spin state and moving freely in opposite directions. Mea-
surements can be made, say by Stern-Gerlach magnets, on se-
lected components of the spins...
—John W. Bell (1964) [31]

This circuit is interesting because it has inclines and declines. Not
just up, but down as well.
—Murray Walker
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11 Fault-tolerant computing
The best-performing quantum computers available today are made of super-
conducting circuits, which can only operate at near-absolute zero tempera-
tures. Due to construction and operating costs in the hundreds of millions
of dollars, it’s likely that quantum computers will only exist in the cloud for
the foreseeable future; quantum computers will likely be incorporated into
distributed systems. By that token, we can treat quantum computers as
nodes in a geographically distributed computer system.

11.1 Formalism

Distributed systems are commonly modeled as a network graph G = (V,E);
since the representations of V and E are arbitrary, we can think of G as a
topological object.

11.2 The CAP theorem

Theorem 2. (Brewer) Any distributed data store cannot guarantee more
than two out of three of: consistency, availability, and performance.
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11.3 Exercises

Exercise 50. �����Show that a complete graph Kn represents a fault-
tolerant peer-to-peer network.
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12 Stabilizers

12.1 Formalism

A stabilizer A of a state ∣ψ⟩ is an operator such that ∣ψ⟩ is the +1 eigenstate
of A. In the absence of a Pauli error, we have

A ∣ψ⟩ = ∣ψ⟩ . (40)

This isn’t to say that A has no impact on ∣ψ⟩; its action is a projection onto
a particular eigenstate. Let’s define its action.

12.2 The controlled-A gate (CA)

To illustrate the stabilizer formalism, let’s introduce a new gate, which we’ll
call A, which takes an arbitrary input ∣ψ⟩, and reports the measurement of
an ancilla, which we initialize as ∣0⟩ and name q0. This bit controls whether
the A operator is applied to ∣ψ⟩ .

∣0⟩

∣ψ⟩

H H M

A

Figure 4: The A circuit, which is not a stabilizer.

Let’s examine the action of this circuit on the state ∣0⟩ ∣ψ⟩ ∶

Hq0ÐÐ→ ∣+⟩ ∣ψ⟩
CA∣ψ⟩
ÐÐÐ→ ∣0⟩ ∣ψ⟩ + ∣1⟩A ∣ψ⟩
Hq0ÐÐ→ ∣+⟩ ∣ψ⟩ + ∣−⟩A ∣ψ⟩
Mq0ÐÐ→ 0(∣ψ⟩ +A ∣ψ⟩) + 1(∣ψ⟩ −A ∣ψ⟩)

The final line of the above indicates that, in the case that A ∣ψ⟩ = ∣ψ⟩, it is
only possible to measure a 0 in this circuit.

But now, the input state ∣ψ⟩ has been transformed into a superposition
of ∣ψ⟩ and A ∣ψ⟩, which we may denote as:
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∣ψ⟩ ±A ∣ψ⟩ (41)

We’ll want to be a bit more specific when we build actual circuits. In general,
to construct a circuit that measures a stabilizer, an ancillary qubit is prepared
in the ∣0⟩ state, which is read by a measure gate as 1 in the presence of an
error. We implement this circuit in two different ways to measure X and Z
stabilizers.

12.3 The X stabilizer

Since we only care about correcting X and Z errors, we can implement the A
stabilizer measurement circuit as X and Z stabilizer measurement circuits.
Let’s start with the X stabilizer:

∣0⟩

∣+⟩+∣−⟩
√
2

H H M

This circuit is the same as the controlled-A, but instead a CX circuit is
in is place. Let’s replace A with X. From equation 41:

0(∣ψ⟩ +X ∣ψ⟩) + 1(∣ψ⟩ −X ∣ψ⟩) (42)

Suppose we were to build a quantum circuit with a state ∣ϕ⟩ representing
the data we want to preserve, and assume an X error were to act on the
state ∣ϕ⟩, which we write as

∣ψ⟩ =X ∣ϕ⟩ = ∣+⟩ + ∣−⟩√
2

. (43)

To summarize, this stabilizer has a dual purpose:

• To detect quantum errors, which are indicated by a 1 measurement;

• To correct quantum errors; this circuit can remove a single X error
that occurred before the circuit ran.
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A careful reader may ask what would happen if an X error occurs immedi-
ately before or after the control point; consider the following identity:

X
≡

X

X

In this case, the X error is propagated into ∣ψ⟩, however, we’re able to detect
the fact that an X error occurred at this point!

12.4 The Z stabilizer

∣0⟩

∣ψ⟩

M

The Z stabilizer operates in a similar fashion to the X stabilizer, and can
similarly detect and correct a single Z error by exploiting the identity

Z
≡

Z

Z

Figure 5 provides an example of measuring three consecutive stabilizers.

Figure 5: Three 2-qubit Z stabilizers in action. The red lines represent the
presence of an X error, and the arrows represent the results of stabilizer
measurement. The (classical) 0 and 1 measurements form a stream, which
can fed into a classical algorithm to determine which qubits must be flipped,
forming the basis of error-tolerant quantum computation [32].
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The ancillary qubit will be in the ∣0⟩ state if no error has occurred. If an
error has occurred, the ancillary qubit will be in the ∣1⟩ state. Figure 5
demonstrates examples of Z stabilizer measurement. In this example, each
measurement requires an ancillary qubit (initialized to ∣0⟩ at the start of each
round of measurements).

12.5 Exercises

Exercise 51. �����Prove that the circuit in figure 5 works as advertised.

Exercise 52. ����Prove the “controlled X” identity:

X
≡

X

It was these we had in mind when explaining stability...
—Erwin Schröedinger (1944) [33]
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13 Lattice surgery

13.1 The planar code

Given a Gaussian lattice F = Z[i]2, the generated group G = ⟨F⟩ describes
the planar code, (a kind of surface code) which we can use to build a two-
dimensional quantum computer. If you were to take a classical integrated
circuit out of its plastic packaging and hold it underneath an electron tun-
neling microscope, you’d most likely find a bunch of NAND gates cobbled
together (which suffices to build a universal classical computer). Since we
have to work a little harder than that to build a quantum computer, we begin
our work here with a more abstract structure, where each point in the lattice
corresponds to a physical qubit.

In that sense, the lattice works as a framework to hang things on. Suppose
C ⊂ G. A plaquette (or tile) P can be defined as any convex hull ∂C. We can
now define the planar code as

S =⋃
i≥1

Pi. (44)

In most examples, ∂Pi is a square (such that ∣∂Pi∣ = 4, or triangular, such that
it’s drawn as a half-moon shape. The collection of all the plaquettes is what
we call the planar code: the fundamental parameter is the code distance d,
which is its horizontal or vertical length, making each code square-shaped.

Figure 6: A distance 7 planar code. The gray and white tiles represent Z
and X stabilizers, respectively. The corner of each plaquette contains a single
data qubit, and each plaquette contains one measure qubit in its center [32].
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If Pi⋂Pj ≠ {}, we say that Pi and Pj “touch” (or, are nearest neighbors).

Lemma 1. A planar code whose plaquettes satisfy the condition that, each
nearest neighbor Pi and Pj are opposite colors, and have an even number or
qubits in common, is regarded as proper (or standard) planar code.

Theorem 3. The planar code can correct ⌊d−12 ⌋ topologically trivial errors
per circuit run.

13.2 Logical qubits

Due to the short-term longevity of physical qubits, we use O(d2) physical
qubits (comprising plaquettes), to represent a single logical qubit, denoted
∣ψL⟩. Importantly, the logical qubit is not a quantum mechanical object per
se; it is a combinatorial object, defined entirely in terms of plaquettes.

The meaning of ∣0L⟩ is also rather subtle, because it doesn’t correspond
to a particular set of qubits, rather, we say that it is the simultaneous +1
eigenstates of all stabilizers contained in S.

Example 1.

13.3 Logical operators

The standard planar code is a d × d array of logical qubits. If we know how
to encode a (long-lived) logical qubit using one, the code can represent a
single logical qubit. The key mathematical reason why all of this works is
that Pauli operators are anticommutative, that is:

XZ = −ZX. (45)

If a planar code comprises consecutive alternating Z and X stabilizers, we
have

XZXZX =XZ(−ZX)X = −X

Since we have an odd number of plaquettes (or stabilizers) in one direction,
so we end up with −X or −Z for any odd d. This means that in the presence
of an X error, we end up with −I, which indicates the presence of an an X
error [34].
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13.4 Operator movement

Returning to the surface code, let’s look more specifically at the effect of
merging and splitting surface codes together. at what Figure 7 illustrates a
basic example of operator movement.

X

Z

aX

Z

a) b)

Figure 7: Performing operator movement. (a) The blue dots represent mea-
surement qubits, and the green and red lines represent measurement along
the Z and X axes. (b) The product aX represents the result of the Kronecker
product of X stabilizer measurements across the blue measure qubits [35].

13.5 Logical CX

Now that we’ve built logical qubits and X and Z operators, we can now
build more interesting logical gates, starting with CX. Figure 8 illustrates
how we can represent a merged set of plaquettes into a single model. For
each prism, the bottom represents the surface code; the upward dimension
represents the arrow of time pointing upward; the X and Z stabilizers are
traced. Starting from the bottom left of the figure and working out way up,
the branch represents the possible results of the control qubit.
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Figure 8: Representing a set of five merged surface codes as a 3D model. [36]

13.6 Exercises

Exercise 53. ����Write out the explicit simultaneous +1 eigenstates of a
distance 3 surface code.

I didn’t expect to recover from my second operation but since I
did, I consider that I’m living on borrowed time. Every day that
dawns is a gift to me and I take it in that way. I accept it grate-
fully without looking beyond it. I completely forget my physical
suffering and all the unpleasantness of my present condition and
I think only of the joy of seeing the sun rise once more and of
being able to work a little bit, even under difficult conditions.
—Henri Matisse

This is a code because the real problem is the prevention of war.
—J. Robert Oppenheimer (1955) [37]
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14 Syndrome analysis
Once we’ve implemented the surface code on physical hardware,4 we can
perform computations in an error-tolerant fashion. To do this, we must
perform sequential measurements of the stabilizers: each measurement is
known as a round, denoted as r. The data collected from each round is used
to compute syndrome measurements, which tell use where errors occurred
on the circuit; these data are streamed into a classical computer for further
syndrome analysis.

14.1 Pauli frames

Imagine a quantum computer with four qubits, [q0, q1, q2, q3], and a single
round of stabilizer measurements are taken, wherein a Z error is detected
on q1, and an X error is detected on q4. The corresponding Pauli frame for
this set of detection events is IXIZ. This information is used in each round
to update the logical Pauli frame. When an odd number of X or Z errors
have been detected in a given physical Pauli frame, the logical Pauli frame
is updated to reflect the presence of a logical X error.

As demonstrated in Figure 9 a ∣0L⟩ state, then applying a logical X
operator. This transformation occurs from left to right, since it’s touching
the dark plaquettes; when an X error has been tracked, we note that in
the logical Pauli frame, and update ∣0L⟩ to X ∣0L⟩ = ∣1L⟩ . The green boxes
are known as templates : a single 4x4 template in the center containing the
square plaquettes, as well as 1x4 templates containing the “triangular” half-
moon plaquettes. [36]
4Not a trivial task, of course, but we’ll later see how we can simulate one.
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Figure 9:

14.2 Minimum weight perfect matching (MWPM)

A quantum computer can’t do its job alone; it needs a classical co-processor
to analyze its measurement results. MWPM is one such classical algorithm,
which analyzes detection events to correct errors.

14.2.1 Detection events

A detector is a parity of syndrome measurement bits in a quantum error
correction circuit. That means we can measure a handful of syndrome out-
comes, add them up to find parity of the result modulo 2. A detection event
is a detector measurement of outcome 1.

14.2.2 The algorithm

MWPM is a graph algorithm that maps a graph G = (V,E) to an edge subset
E′ ⊆ E, whereby E′ is a perfect matching of E, such that

W = ∑
e∈E′

w(e) (46)

is minimized. E′ is a perfect matching if each vertex in V is connected to
exactly one edge in E′.
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14.2.3 Putting it all together

MWPM for TQEC decomposes the error model by X and Z errors. Each
detection event is modeled as a vertex in G, and for each edge e = (u, v),
w(e) indicates the prior probability of detection event u flipping v. Thus, E′
tells us which chain of detection events we can trust most when correcting
errors in a circuit execution.

14.2.4 Implementation concerns

Minimizing W is a challenging problem; an intuitive approach is to use Dijk-
stra’s algorithm on G repeatedly. More involved approaches utilize physical
data to prune away unlikely candidates for the matching, creating a more
focused search space, paving the way for amortized O(1) execution of the al-
gorithm in parallel [38]. The sparse blossom approach utilizes this pruning,
as well as linear programming, to performing the algorithm in microsecond
time on a single core. [39]

14.3 Exercises

Exercise 54. �����Show that the naive implementation of MWPM per-
forms in Ω(∣V ∣ log ∣V ∣) time.

Exercise 55. ����Prove that, given a reasonable set of physical assump-
tions, MWPM can be performed in Θ(1) time on average.

As regards the specification of the conditions for any well-defined
application of the formalism, it is moreover essential that the
whole experimental arrangement be taken into account.
—Niels Bohr (1949) [40]
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15 Software applications

15.1 Stim

Stim is an open-source Python library that offers an API for simulating sur-
face codes, wherein the user supplies parameters such as d, r, and error prob-
ability p. It generates circuits in a format per a custom language reminiscent
of OpenQASM [41]. The library was designed with real-time performance in
mind, making it useful for researchers and developers in the field [42]. The
following code snippet illustrates a basic use case:

st im . C i r cu i t
. generated

(
" surface_code : rotated_memory_z" ,
d i s t anc e=d ,
rounds=r ,
a f t e r_c l i f f o r d_depo l a r i z a t i o n=p ,
before_round_data_depolar izat ion=p ,
be fore_measure_f l ip_probabi l i ty=p ,
a f t e r_r e s e t_ f l i p_probab i l i t y=p
)

Stim is the highest-performing surface code simulator available; its core func-
tionality is written in C++. It exports files to a special format as a pictorial
representation of the circuit. Gidney has developed other quantum circuit
editors for the browser such as Crumble [43] and Quirk [Quirk].

You should really just use Stim.
—Unknown (2023)

15.2 TQEC.app

This user interface allows the user to specify a qubit unit cell Q, which is
a Gaussian lattice generator laid out on a grid with integer lengths, and a
set of grid spaces that contain each qubit in Q. The app then populates the
viewport with qubits according to the unit cell; the user may then specify
plaquettes, along with a canonical-form circuit within them. The backend
service will utilize Stim to help build and validate the users’ circuits. The
author first envisioned this very work as an “instruction manual”, but that
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will materialize as written and video walkthroughs of the app.5 Figure 10
illustrates the creation of a circuit using the app.

Figure 10: Editing a plaquette using TQEC.app. The red and black qubits are
laid out according to the standard two-dimensional unit cell. Each plaquette
contains an ancillary (measure) qubit, and some number of CX and CZ
qubits, which comprise a canonical-form circuit [TQEC.app].

Everyone seems to want user interface but they are not sure whether
they should order it by the yard or by the ton.
—Alan Kay (1996) [45]

5The site is under active development, with new features are added on a regular basis.
[44]
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16 Further reading
For summation notation, defined precisely, refer to [46], chapter 2. For the
axioms of probability theory, refer to [47]. I also recommend Daniel Litinski’s
PhD thesis on quantum error correction.

Computers are made up of logic gates that stretch out to the hori-
zon in a vast numerical irrigation system.
—Stan Augarten (1983) [48]

I don’t think these are the errors that the title was referring to.
—Jarrett Green (2023) [49]
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It’s never going to be perfect; you simply run out of time.
—Peter Jackson (2003) [50]
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