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Abstract—Advances in storage software and filesystems have
proliferated a vast array of easy-to-use distributed storage
services, removing the barrier for a growing number of orga-
nizations to geo-distribute large data sets. While leaving data in
their distributed environments is convenient for data collection,
various types of processing (that might use multiple data sources)
are precluded due to the prohibitive costs of data movement.
Users are therefore burdened with finding creative ways of
performing data analysis, often requiring expert knowledge in
multiple domains.

This paper reports on the design and implementation of a
query engine that enables high-level queries over distributed
data sets. Our system generates bitmap indices at multiple geo-
distributed data sources in order to approximate large amounts
of raw data values. The bitmaps are replicated for fault-tolerance
and performance. Upon accepting a high-level (SQL-like) query,
our system generates a query plan, resolves dependencies, and
schedules for its execution over the distributed system. The
system has been tested rigorously, and experimental results show
that most overheads (i.e., query planning, node spawning, etc.)
are negligible. Our testing also shows that our system is capable
of delivering query results in the face of node failures, with
no observable impact on query execution for up to 20% of the
system failing. The system also provides a framework that is
easily extendible for future research on the interplay between
distributed systems and bitmap indices.

I. INTRODUCTION

Distributed data storage systems were initially designed to

incorporate geographically distributed users while improving

availability and performance of access to data [1]. The same

set of motivations are even more pronounced in today’s data-

driven applications. The value of analytics has incentivized or-

ganizations to store data sets of high resolution and size. Also,

the success of cloud computing has significantly reduced the

cost barrier to access high-capacity distributed storage. Finally,

the rate of data generation is so rapid among emerging appli-

cations that organizations lack the time to prepare and load

the data into a relational database for query processing [2].

Therefore, a growing number of organizations now store their

data, possibly piecemeal, in raw formats across high-capacity

distributed storage systems. That an organization regularly

uses distributed cloud storage [3]–[5] and freely available

distributed filesystems [6], [7] has become commonplace.

While cloud storage providers and distributed filesystems

have effectively abstracted away various low-level complexi-
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ties to enforce data consistency and availability, users are still

laden with the challenges of orchestrating the processing of

their distributed data sets. Programmers need an intuitive and

efficient mechanism to retrieve the desired data to participate

in query execution.

Consider a motivating real-world example in which an

organization generates, stores, and processes data sets in

a distributed system: The Bonneville Power Administration

(BPA.gov), a U.S. federal energy marketing authority, is

completing its implementation of a Smart Grid project, in

which hundreds of remote sensors are geographically deployed

across the northwest power grid [8]. Each sensor collects high

resolution power-transmission data at a rate of up to 120
measurements per second, resulting in ∼ 2 GB per hour stored

in nearby servers.

Figure 1 illustrates an important application within BPA’s

Smart Grid. The shaded blue areas denote the geographical

regions represented by data stored in a nearby disk. During

a power event (e.g., line failure), it is imperative for grid

operators to obtain the prior state of the grid within the faulting

region [9]–[11]. The state of the grid in the moments leading

up to the fault must be reconstructed using data pertaining to

several geographically-distributed disks. However, problems

abound: First, due to the power failure, the nodes storing

the data are also presumably unreachable. Second, even if

the data was obtainable (e.g., power backup was available),

it is still prohibitively expensive to transfer all the data onto

a centralized location for processing.

Therefore, users must in real-time (1) identify which (re-

maining) storage nodes might contain the data pertaining to

the region of interest, i.e., A, B, E, and D in the figure,

(2) retrieve only the subset of data necessary to perform the

analysis to minimize data transfer, and (3) orchestrate data

transfer, dependency resolution, execution of processes, and

interpretation of the information that is extracted.

To solve this class of problems, we propose a comprehensive

system that supports efficient high-level (e.g., SQL style)

queries and fault-tolerance over distributed data sets. At the

heart of our system are bitmap indices, built to summarize

and approximate the raw data with which they are co-located.

As we will show in Section II, bitmaps are fast and effective

in summarizing large amounts of data. We employ data-

replication strategies to ensure that queries can be answered
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Fig. 1: Distributed Data Generation and Querying

even in the presence of node failures. Our system accepts and

parses a high-level input query, then decomposes it into a set

of simple bitwise operations, each known as subqueries, that

are performed across the distributed bitmaps. As we will later

explore, because subqueries are independent units, they can

be executed in parallel, leading to higher performance. The

subqueries’ partial results are merged and reduced, before the

final result is returned to the user.

The remainder of this paper is organized as follows. Sec-

tion II presents a brief background on bitmap indices. Then

Section III gives an overview of our distributed indexing

system, and the algorithms involved in ensuring the index

is both consistent and fault-tolerant. Section IV outlines our

query planner and execution engine. We show that queries

can be processed efficiently in terms of minimizing the time-

complexity as well as the number of messages required.

Experimental setup and results are explained in Section V.

Section VI describes, to the best of our knowledge, the related

work. Finally, Section VII describes the future work and

conclusion.

II. BACKGROUND

In this section we present a brief overview of bitmap indices,

and how they enable fast query execution in database systems.

As an example, let us consider indexing the US census data

(see Table I for a small subset of example data). If stored in its

raw un-indexed format, then answering even a simple query,

“Return people with salaries of at least $100 000 who are under

the age of 50,” would require a scan each of the 326 000 000
tuples (or rows) of the file, as each tuple corresponds to a

unique person in the US. Assuming that each tuple requires

only 1 KB of storage, the query processing time would exceed

10 minutes on a modern solid-state drive with 550 MB/s read-

bandwidth. Clearly, the performance would be unacceptable

for real-time data analysis.

To accelerate query execution, modern database systems

typically employ some form of an index. Generally, an index

is a data structure that stores a key by which to identify

a tuple on disk. The query engine would then first consult

the index to prune away true-negatives, and reserve expensive

TABLE I: Example of a Relation, CENSUS

Tuple Salary ($) Age City Name ...

t0 65 000 20 Tacoma Julia ...
t1 25 000 76 Spokane Tim ...
t2 130 000 42 Seattle Maria ...
t3 90 000 38 Tacoma David ...

disk accesses to check if candidate tuples meet the selection

criteria. Due to the emergence of modern bitmap-compression

techniques [12]–[15], the decades-old bitmap index [16] has

reemerged and gained favor with the broader big-data com-

munity [17]–[21]. A bitmap index is a set of bit-vectors
that represent truth values pertaining to underlying data. An

attribute, or column, in the database can be indexed by first

enumerating all possible values, or more commonly, ranges

of values (known as bins). Then each tuple’s value for that

attribute is examined, and if it matches the particular value or

bin, it is assigned 1, and otherwise, 0. Tables II and III show

four possible bins, and thus bit-vectors (read vertically), for

the corresponding Age (A) and Salary (S) attributes seen in

Table I.

TABLE II: Bitmap for Salary (S, in thousands) in Table I

S ≤ 60 60 < S ≤ 100 100 < S ≤ 300 300 < S
v0 v1 v2 v3

t0 0 1 0 0
t1 1 0 0 0
t2 0 0 1 0
t3 0 1 0 0

TABLE III: Bitmap for Age (A) in Table I

A < 18 18 ≤ A < 21 21 ≤ A < 66 66 ≤ A
v4 v5 v6 v7

t0 0 1 0 0
t1 0 0 0 1
t2 0 0 1 0
t3 0 0 1 0

Queries over a bitmap index are efficient, as they principally

comprise bitwise operations. To satisfy the previous query, we

first find all people making over $100 000 by ORing vectors v2
and v3. Next, we find everyone under the age of 50 by ORing

bitmap vectors v4, v5, and v6, which will include all who are

under the age of 66 (a superset of the tuples relevant to the

query). After ANDing together the two intermediate results, the

final bit-vector will have a value of 1 in rows corresponding

to those who may satisfy the selection. To identify the exact

tuples that satisfy the query, the query engine traces the 1-bits

to their corresponding tuple on disk and retrieves the value

to run the final check. The total number of tuples scanned is

significantly fewer than in a naı̈ve sequential disk scan.

III. SYSTEM OVERVIEW

The following section details various design choices made

during the implementation of the distributed bitmap engine.
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A. System Architecture
Our distributed indexing system implements the master-

slave paradigm, comprising a head node and a collection of

index nodes. Each index node stores a set of bit-vectors and,

when requested, can perform logical operators across these

bit-vectors to satisfy queries.
The head node serves as the interface to the client, exposing

two important functions: PUT (k, v), which adds a bit-vector

with id k and value v into the system (or replaces the value of

vector k with v if k exists). It also supports the QUERY (q)
function, which returns the results of a given query string q
on the distributed index. Details of the query string and query

processing will be given in Section IV.
In addition to the client interface, the head node also man-

ages the index nodes. When an index node joins the network,

it is communicated to the head node, which then records its

existence, determines the existing and future bit-vectors that

should be moved to this node for fault tolerance, and manages

the data transfer. The head node periodically pings all index

nodes to ensure their availability, and upon receiving a timeout,

it commences the failure protocol, discussed in Section III-C.
Another task for which the head node is responsible is

data placement. Upon receiving a PUT (k, v) request from

the client, the head node sends the given bit-vector to r ≥ 2
unique index nodes, where r is the replication factor. The bit-

vector is saved on r distinct index nodes, so that if one node

became inoperative, then the bit-vectors it held are not lost.

In other words, our system can absorb r − 1 simultaneous

failures.
After determining where to store the replicas, we use the

two-phase commit (2PC) protocol [22] to ensure that the

data actually arrived at the appropriate index nodes. Before

committing a vector to an index node, the head node checks

that the r index nodes are available: if so, the vector is sent

to both, if either is unavailable, the inaccessible index node

is removed from the system and the commit of the vector is

restarted.
Finally, the head node is responsible for both planning and

carrying out query execution over the index nodes. To satisfy

a given query, the head node constructs a query plan, which

specifies which index nodes will help satisfy the query, and

the order in which the nodes are to be accessed to resolve

dependencies. The index nodes work together to satisfy queries

using the bit-vectors they contain, and return partial query

results to the head node. The head node then reduces the

results from each index node and returns it to the client. The

algorithms by which queries are satisfied are given in later

sections.

B. Consistent Hashing
The method we locate and store bit-vectors is through

consistent hashing [23]. When index nodes are added to the

system, the head node assigns it to a point on a ring, where

each point corresponds to a value between 0 and 264− 1. The

point for a node with identifier i is calculated as:

h(i) := SHA1(i) mod 264

To determine which index nodes (should) contain bit-vector k,

we “walk” clockwise from point h(k) until reaching the first

index node (known as the primary node), and continue walking

until reaching the succeeding node (known as the backup
node). This process continues until all remaining backup nodes

are identified. The primary and the r−1 backup nodes contain

a replica of bit-vector k.
Figure 2 shows an example when r = 2. To locate bit-

vector vn, it is first hashed onto the ring. A clockwise walk

determines that node C is the primary index node storing vn.

A further walk from C determines that D is the lone backup

node containing a replica.

A
0

263

B

C

D

E

F

vnh(vn) = 262

Fig. 2: Visualization of Ring Consistent Hashing (when r = 2)

In our system the consistent-hashing structure is imple-

mented using a red-black tree. Each tree node corresponds

with an index node in the distributed system and contains

pointers to its left child, right child, and parent. The figure

above that shows the placement of vn is revisited as a red-

black tree in Figure 3.

C

B E

F D A

vn

TREE-SUCC(tree, h(vn))

TREE-SUCC(tree, h(C.id))

Fig. 3: Red-Black Tree Traversal

This hashing scheme is formalized in Algorithms 1, 2,

and 3, respectively. Calling Algorithm 1 will return a set of r
index nodes that store the given bit-vector.

Lemma 1. TREE-SUCC ∈ O(log n), where n is the number
of nodes in the system.
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Algorithm 1 Consistent Hashing

procedure CONSISTENT-HASH(tree, key, r)

inodes← {TREE-SUCC(tree, h(key))}
for i← 1 to r − 1 do

inodes← inodes ∪
{TREE-SUCC(tree, inodes[i− 1].id)}

return inodes

Algorithm 2 Successor Node

procedure TREE-SUCC(tree, key)

if h(key) ≥ h(TREE-MAX(tree).id) then
return TREE-MIN(tree)

else
root← ROOT(tree)
return RECUR-SUCC(tree, root, root, key)

Proof. If h(key) > h(TREE-MAX(tree).id), TREE-SUCC

will be called at most h times until one of the first two

branches is taken, where h is the height of the tree. In the

second branch, either loop will run for up to h iterations. In all

cases, since h = O(log n) [24], TREE-SUCC ∈ O(log n).

Lemma 2. CONSISTENT-HASH ∈ O(r log n).

Proof. Follows trivially from the implementation and

Lemma 1.

C. Fault Tolerance with Bit-Vector Redistribution

The principal reason for employing consistent hashing is

to support fault tolerance. Upon receiving a message from the

client, the head node checks the living status of its index nodes.

If an index node times out, it reallocates the index node’s bit-

vectors using REALLOCATE (Algorithm 4), passing the timed-

out node as a parameter. In each node in the red-black tree we

Algorithm 3 Recursively Determine Successor Node

procedure RECUR-SUCC(tree, root, succ, key)

if root = null then
return succ

else if key = h(root.id) then
if RIGHT(root) = null then

while PAR(succ) �= null ∧ h(succ) < key do
succ← PAR(succ)

else
succ← RIGHT(root)
while LEFT(succ) �= null do

succ← LEFT(succ)
return succ

else if h(root.id) > key then
left← LEFT(root)
return RECUR-SUCC(tree, left, root, key)

else
right← RIGHT(root)
return RECUR-SUCC(tree, right, succ, key)

store the identifiers of the primary vectors on the associated

index node (contained in the vectors list), specifically for this

purpose.

Algorithm 4 Reallocation

procedure REALLOCATE(tree, inode, r)

S0 ← TREE-SUCC(tree, inode.id)
S1 ← TREE-SUCC(tree, S0.id)
for i← 0 to r − 3 do

S1 ← TREE-SUCC(tree, S1.id)

SEND-VECTORS(S0, inode.vectors, S1)
S0.vectors← S0.vectors ∪ inode.vectors
P ← TREE-PRED(tree, inode.id)
for j ← 0 to r − 2 do

S1 ← TREE-PRED(tree, S1.id)
SEND-VECTORS(P, P.vectors, S1)
P ← TREE-PRED(tree, P.id)

RB-DELETE(tree, inode)

To understand the REALLOCATE procedure, suppose

there are r + 1 index nodes. Let Id+k denote the in-

dex node positioned k nodes ahead of node Id on the

consistent hashing ring. Suppose that the head node calls

REALLOCATE(tree, Id, r). Id’s primary vectors are backed

up on nodes {Id+1, Id+2, . . . , Id+r−1}. To ensure that Id’s

primary vectors are contained in r index nodes, we must have

Id+1 pass said vectors to Id+r, which is found by repeatedly

finding successors of Id as shown.
Consistent hash mappings of Id’s primary vectors will map

to Id+1 upon deleting Id from the tree, so Id+1 must inherit

Id’s primary vectors. Next we must ensure that the vectors

that Id held as a backup are transferred to additional nodes

to satisfy our r-replication requirement. We do this by taking

making the r − 1 predecessors of Id forward their primary

vectors to the index nodes r places ahead of them. Afterward,

every index node’s primary vector is contained the proceeding

r − 1 nodes, thus guaranteeing that each vector is located on

r unique index nodes.

A

B

C

D

E

F
v1v2

v3

v4

v5

Fig. 4: Visualization of Vector Reallocation (when r = 2)

An example of this procedure when r = 2 is shown in

Figure 4. Here, node F has failed. The vectors that must
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be reallocated are those for which node F was the primary

location and those for which node F was the backup location.

In the figure, vectors v1 and v2 had F as their primary location

and B as their backup location (which will now become their

primary location). So, B will send copies of v1 and v2 to node

C, which will serve as the new backup location, as it succeeds

B on the ring. Second, vectors v4 and v5 will be sent from

A (their primary location) to B, which will now serve as the

backup node for F . After this, the system will once again

contain two copies of each vector.

In our implementation we utilized algorithm TREE-PRED

to locate the predecessor of a given node on the ring,

which is symmetrical to the TREE-SUCCESSOR algorithm

given in [24]. We also use RB-DELETE to remove an in-

dex node from the tree [24]. We made use of an RPC,

SEND-VECTORS(I1,K, I2), which tells index node I1 to send

each vector in K to index node I2.

Theorem 1. REALLOCATE has O(r) message complexity and
O(r(log n + K/n)) time complexity, where K is the total
number of vectors in the system.

Proof. According to Lemma 1, TREE-SUCC and TREE-PRED

run on order O(log n). They are called a total of r and 2r−1
times, respectively. Because any vector has an O(1/n) proba-

bility of being an arbitrary index node’s primary vector [23],

we would expect |K| = O(K/n), where K is an index node’s

set of primary vectors. SEND-VECTORS(I1,K, I2) will require

I1 to send O(K/n) vectors, so it will need to marshal the

contents of O(K/n) vector files into an RPC call it makes to

I2, and therefore has O(1) message complexity and O(K/n)
time complexity; it is called r times. Finally, RB-DELETE has

O(log n) time complexity [24]. Thus total time complexity

is O(3r log n + r(K/n))) = O(r(log n + K/n)) and total

message complexity is O(r).

The rationale for using consistent hashing is to reduce data

movement during reallocation. For instance, when the system

changes (e.g., an index node is added or removed) it is possible

under naı̈ve hashing techniques that every bit-vector may need

to be rehashed [25]. This hash disruption imposes a significant

amount of message passing for data re-organization than our

REALLOCATE function. While naı̈ve methods, such as static

hashing, requires O(K) remappings [23], consistent hashing

only requires O(K/n) remappings (Theorem 1).

IV. QUERY PLANNING AND DISPATCH

Using bitmap indices, our system can handle range and

point (exact-match) queries. Other queries, including joins and

aggregation are also possible, but were not yet implemented

at the time of writing.

A range query is given as a sequence of pairs of bit-

vector IDs, where each pair specifies the first and final

vectors in the range. Within these ranges, the vectors are

ORed together. An example of a range query is coded

[2,3]&[4,6] which would, in the context of Tables II

and III, correspond to the SQL query, select * from

CENSUS where salary>100000 and age<50. Using

a bitmap index, the query can be satisfied by evaluating the

expression:

(v1 ∨ v2) ∧ (v4 ∨ v5 ∨ v6)

In this paper we refer to each parenthetical quantity as a

subquery. Note that subqueries, which involves sequence of

ORs, can be performed independently. The results of multiple

subqueries are then reduced to complete the process.

……

…

Index
node

Head
node

…Bit
vectors

(2)

(4)

Subquery

(4)

(1,6)
(7)

(0)

Partial
results

(3)

(3)

(5)

Client

Fig. 5: Query Execution

A point (exact-match) query is the same as a range query,

except that each pair is of the form [n,n]. For instance,

select * from CENSUS where salary=100000
and age=50 can be simply coded as the range query

[1,1]&[6,6]. Point queries require no intermediate

subquery execution, as the bit-vectors v1 and v6 can be

returned immediately by their respective index nodes for

reduction. Because bit-vectors are distributed throughout

our system, there may exist multiple plans to facilitate their

access. In the following subsections, we outline an optimal

query-planning strategy to execute the query as efficiently as

possible.

Figure 5 shows the comprehensive query-execution scheme.

(0) A client initiates the process by submitting a high-level to

the head node. For each query, the head node generates an

optimized query plan, then dispatches the plan to at least one

index node to shepherd the query. All of the necessary bit-

vectors may be contained on one index node (1), in which

case, the results are returned to the head node immediately.

(7) This occurs more often for point queries and for range

queries that contain short ranges.

Otherwise, the head node dispatches additional subqueries,

which are partial ranges, to the specific index nodes that
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store the appropriate bit-vectors. (4-5) Their partial results are

delivered to the head node, where the partial results of the

subqueries are reduced. (6) Finally, the head node transfers

the results back to the client. (7)

A. Query Planning

In step (1) of the query execution scheme described previ-

ous, the query-planning algorithm (Algorithm 5) inputs tree,

which is the red-black tree used in consistent hashing, the

replication factor r, and a list of pairs, R, where each pair

(i, j) ∈ R denotes a subquery range starting at bit-vector vi
and ending at vj (inclusive), where i ≤ j. Sorting of subpaths
is performed so that, in each portion of the query, index nodes

do not have to be visited more than once, making query-

processing linear with respect to the number of index nodes.

Because the bitwise operator ∨ is commutative, the order in

which the vectors are ORed within the subquery is arbitrary,

and therefore, the subqueries can be processed in parallel. In

an effort to distribute the work to all index nodes as evenly as

possible, we choose a random return value from CONSISTENT-

HASH as the index node to visit for each of the given vectors.

Algorithm 5 Query Planning

procedure QUERY-PLAN(tree, r, R)

paths← ∅
for all (first, last) ∈ R do

subpaths← ∅
for v id ∈ [first, last] do

inodes← CONSISTENT-HASH(tree, v id, r)
inode← inodes[RANDOM(0, r)]
subpaths← subpaths ∪ {(inode id, v id)}

Sort subpaths on inode id
paths← paths ∪ {subpaths}

return paths

The return value of QUERY-PLAN is a set of subqueries,

Q, where each subquery comprises one or more pairs of the

form (inode id, vector id). These pairs are used in the query

execution algorithms to determine which index nodes to visit

and which vectors to obtain. For example, the pair (3, 2)
indicates that v2 should be retrieved from index node 3.

Theorem 2. QUERY-PLAN ∈ O(|R| · r ·K log(K · n)).
Proof. Operations in the innermost loop are O(r log n) and

O(1) (Lemma 2). That loop runs for (last − first) ≤ K
iterations, taking O(K · r log n) time. subpaths is at most K
in length, and sorting it requires O(K logK) time; because

the outer loop executes |R| times, the entire procedure has

O(|R| · K(logK + r log n)) time complexity. Since

lim
n→∞

r log n+ logK

r log(K · n) = 1,

QUERY-PLAN ∈ O(|R| · r ·K log(K · n)).

B. Query Execution

Execution of queries received by the head node is handled

using Algorithm 7, which first plans the query using Algo-

rithm 5 and then delegates each subquery to its index nodes

using Algorithm 6.

Algorithm 6 is an RPC that inputs an index node identifier

and a set of pairs representing a subquery. The index node

iterates over the pairs referencing bit-vectors it contains, and

ORs the vectors together. RETRIEVE-VECTOR(k) returns the

value of vector vk. Once the index node has operated on all

requested vectors it holds, it makes an RPC to the index node

in the subsequent pair, recursively satisfying the remainder of

the subquery.

Theorem 3. If s is the number of index nodes involved in the
range, then the initial call to RANGE-SUBQUERY has O(s)
message complexity.

Proof. Because subquery is sorted on node, each call will

target an index node not previously accessed, and will not be

called more than once by any index node, as it has finished

ORing its own vectors to the result at that point. Therefore, if

each index node is involved in the subquery, a total number

of s messages will need to be sent.

Algorithm 6 Index Node Subquery

procedure RANGE-SUBQUERY(inode id, subquery)

r ← �0
for all (inode, vec) ∈ subquery do

if inode = inode id then
r ← r ∨ RETRIEVE-VECTOR(vec)
subquery ← subquery \ (inode, vec)

else
s← RANGE-SUBQUERY(inode, subquery)
r ← r ∨ s

return r

Algorithm 7 accepts a complete query, divides the work

among the index nodes, ANDs the results of the subqueries

(denoted by R) together, and returns the result to the DBMS.

By Theorem 3, the procedure will require O(|Q| ·s) messages,

where Q is the set of subqueries.

Algorithm 7 Head Query Root

procedure HEAD-QUERY-ROOT(Q)

R← ∅
for all subquery ∈ Q do � Delegate subqueries.

inode id← subquery[0][0]
r ← RANGE-SUBQUERY(inode id, subquery)
R← R ∪ {r}

v ← �1
for all w ∈ R do � AND the results.

v ← v ∧ w
return v
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V. EXPERIMENTAL RESULTS

Our system is implemented in C and tested on Ubuntu

16.04.4 LTS. To create our RPCs, we specified RPCs in the

ONC+ RPC language [26], [27].

A. Experimental Setup

Most experiments involved stress-testing the distributed

system, which require significant horizontal scale-out capabil-

ities. Therefore, due to physical limitations, virtualization was

necessary and we decided to conduct all of our experiments

on a Docker test-bed running on a single Linux machine with

an Intel Quad-core i5-6500 3.20 GHz CPU, 16 GB RAM, and

a 120 GB SSD. Each container executed a single node (head

or index) as a lightweight process. The nodes communicated

via RPC over the Docker bridge network, which emulates a

star network between all nodes.

In order to the conduct the experiments, we used the TPC-C
data set, a commonly-used benchmark that models business

transactions [28], to derive 199406 bit-vectors, each 5 KB to

6 KB in size.

B. System Initialization Time

The first experiment observes the node initialization time,

which is the total time the head node used to handshake, and

insert into the consistent-hash ring, each index node. The node

initialization times are given in Table IV.

10 Nodes 100 Nodes 1000 Nodes
4.501 sec 48.253 sec 667.21 sec

TABLE IV: Node Initialization Time

The initialization time is consistently ∼ 0.5 seconds per

node, regardless of the number of nodes already registered

in the system. This result is intuitive, and shows expected

the efficiency of consistent hashing, whose time-complexity

is clearly dominated by node spawn time.

Next, we were interested in observing the performance of

the PUT (k, v) operator. We spawned 10 index nodes and

loaded varying numbers of bit-vectors, then repeated on 100

and 1000 index nodes. We only chose to evaluate TPC-C
,because it contains a large number of bit-vectors. Figure 6

depicts the results for a replication factor of r = 2. Note that

both axes are presented in log-scale for readability.

The results confirm that the load time is log-linear, i.e.
,O(r log n), which shows that our system scales to large

numbers of bit-vectors. One can observe a sizable gap between

the settings. We believe this is due to the log n factor for

consistent hashing, which noticeably contributes more to the

load time initially, when the system is only storing a small

number of bit-vectors. As more bit-vectors are added, the

hashing overhead is amortized due to the constant r (the

messages sent per bit-vector).

However, there is still another gap between the 100-node to

1000-node setting that cannot be explained by the consistent-

hashing overhead. We believe this overhead is due to the

head node’s heartbeat monitoring for fault-tolerance, which
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Fig. 6: Load Time

runs on each PUT command. This overhead introduces an

additional term for the n heartbeat messages, which causes the

rather constant-sized gap between the two lines. The heartbeat

overhead was simply not exposed between the smaller clusters.

This result indicates that we could optimize PUT by separating

it from the heartbeat logic, a topic for future work.

C. Query Execution and Fault Tolerance

The query execution experiments presented in this section

were performed under the following environment. 100 index

nodes were deployed and stored 10000 total bit-vectors. We

generated 1000 point queries and 1000 range queries, and

ran them as separate experiments in order to understand the

behavior of our system under each condition. The query

workloads are skewed (i.e., a subset of bit-vectors are selected

more often than others). This approach is generally well-

understood, as search-key and primary-key attributes are the

most frequently queried in database and analytical workloads.

In addition to capturing overall query execution time, we

were also interested in showing the impact of node failures on

performance. In the following figures, the no-failure label

pertains to the results in which we did not deliberately kill an

index node. The 10%-failure denotes the results in which

we killed off an index-node after every 100 queries, amounting

to 10% of the original node size. Finally, 20%-failure
shows the case in which we killed an index node after every

50 queries, leaving the system with only 80% of the index

nodes by the time the workload completes.

Point Queries: The first experiment observes the perfor-

mance of point queries both with and without index node

failures. The results are shown in Figure 7(a). Because point

queries are simple (requiring only a single bit-vector per

subquery), their results are quite stable and quite predictable.

The 1000-query workload completes in roughly 2 seconds for

all three cases. The reason that performance is not affected by

faults for point queries is two-fold. When an index node fails,

data reallocation is handled in the background, separately from

the query processor. Because the bit-vectors are replicated,

point queries still can be answered, even as replication is

taking place, through one of the backup nodes.
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Range Queries: The range query results are shown in

Figure 7(b). The average range query time is 0.197 seconds,

which is orders of magnitude longer than point queries. This

result is expected, because this workload contains queries that

may involve a large number of subqueries (and therefore, more

contact with index nodes). As one can observe, the cumu-

lative time increases in a “step-like” fashion, indicating the

exact queries in the workload that were I/O-heavy. However,

similarly to point queries, there is not a significant variance

between the workloads with and without failure.

Together, these results suggest that node failures do not

significantly impact query performance, thanks to consistent

hashing and bit-vector replication.

D. Overhead Evaluation

Next, we are interested in understanding the overhead of

query planning, which occurs on the head node. Recall that,

upon receiving a point or range query from the client, the head

node first generates a distributed query plan that is to be sent

for distributed query execution. We focus on range queries

here, because they their plans are strictly more complex

compared to point queries.

Figure 8 shows the time-elapsed to generate a plan for each

of the 1000 range queries in the workload. As we can see, the
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planning overhead is generally negligible and averages 0.07
ms (or only 0.03% of the average query execution time).

Finally, we show the time taken for bit-vector reallocation

following a node failure. After each index node failure, we

capture the sum of (1) the time taken for the head node to

communicate to the new nodes regarding which bit-vectors to

transfer, (2) the time elapsed to perform the transfer, and (3)

the overhead to remove the failed node from the consistent-

hash ring. Figure 9 shows the time taken to reallocate bit-

vectors onto remaining nodes for the 10% node-failure run

(top) and the 20% node-failure run (bottom).
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As can be seen, bit-vector reallocation time is generally

negligible (recalling that it does not impact query execution),

with an average reallocation time of 44.8 ms. The overhead

would expectedly grow if bit-vector sizes are large (not typical

for bitmaps due to compression), or if the number of bit-

vectors is much larger than our test data. However, we believe

that ∼ 200000 bit-vectors is already on the high-end, as most

bitmaps we have worked with in the past contain a few tens

or hundreds of bit-vectors. Comparing the two plots, we also

conclude that failure frequency does not negatively impact

28



reallocation overhead, as long as a significant number of nodes

remain. We would, of course, expect reallocation overhead to

grow when the number of remaining nodes becomes low.

VI. RELATED WORK

Some of the most persistent challenges with creating and

maintaining a distributed database system is reducing the

serialization and communicating overheads that can reduce

transaction and query throughput [29]. To address these chal-

lenges Alagiannis, et al. proposed the NoDB philosophy [2].

The tenet of this philosophy is to build systems with the goal

of reducing the data-to-query time. They present a NoDB

system, PostgresRaw which reduces the costs associated with

accessing the raw data. PostgresRaw also uses an adaptive

positional map as an indexing structure that is created on-the-

fly during query processing and maintains metadata on the

structure of the raw files. The bitmap index of our system is a

coarse representation of the data and can be queried directly.

Aligned with the NoDB philosophy is the set of work

involving scientific workflows. Workflow management sys-

tems [30]–[34] let users compose directed acyclic graphs

(DAG) comprising distributed data sources, processes, and

their data dependencies. Once a DAG is composed, a workflow

management system schedules the jobs for processing. Paral-

lelism is exploited through the simultaneous execution of in-

dependent jobs. Workflow composition, however, is nontrivial

as it requires manual labor with expertise in the scientific and

computational domains. And while automatic workflow com-

position engines exist [35]–[37], they require careful curation

of the data and processes and are quite limited in the types

of queries that are supported. Our system is more intuitive

in that it accepts high-level (SQL style) queries and returns

results without further user input.

Similar to the workflow management systems, Ebenstein

and Agrawal created a framework that supports join-like

operations over geographically distributed scientific data [38].

They present an algorithm for building and efficiently pruning

distributed query execution plans. We believe that the incor-

poration of bitmap indices may be able to further increase the

efficiency of distributed joins.

The design of our system draws inspiration from several

prominent distributed object storage systems. For instance,

Chord [39], Dynamo [5], Voldemort [40] and Redis [41]

are persistent distributed key-value stores that guarantee high

availability and eventual consistency on its objects. Like these

systems, we also use consistent-hashing to minimize data

movement when adding nodes. Instead of storing arbitrary

data objects, ours stores bit-vectors with the specific purpose

of answering queries. Also noteworthy are popular distributed

files systems, such as HDFS [6] and Calvin [42]. The goal

for these systems, however, focus on the access throughput of

massive files stored across multiple nodes. Because their use-

cases differ from ours, their user-interface supports primitive

filesystem operations, among some others collate, and transfer

the data onto local machines.

Other works have used bitmap indices in distributed sys-

tems. Fotiadou and Pitoura [43] used bitmap-based represen-

tations to compute skyline queries in a distributed setting.

Su, et al. [44] showed that bitmap indices can be used

to create lower-resolutions subsamples of massive datasets

while still preserving both value and spatial distributions.

These works did not explore the general use of bitmaps to

speed up distributed query processing. The closest work to

our own is Pilosa [21], a distributed bitmap engine built by

the eponymous company. It uses the Roaring Bitmaps [15]

compression algorithm and runs each node in a cluster in

lieu of using the master-slave model. Pilosa also allows data

replication on multiple nodes. Due to several core architectural

differences, Pilosa was not a large influence upon the design

of our system.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a fault-tolerant distributed system

that supports high-level database queries. Raw, geo-distributed

data sets are index using a bitmap. Subsets of this bitmap can

be replicated and distributed to enable high performance and

availability. Our query planner decomposes high-level queries

into subqueries, which are then dispatched for execution in the

distributed system.

There are several takeaways from the system’s evaluation.

We showed that our system is fault tolerant, and query per-

formance is generally predictable, even in the face of failures.

Initialization and query planning are necessary overheads, but

as we showed, they do not contribute significantly to the

overall query execution time. We also showed that failure

recovery (reallocation) overhead is independent from query

performance.

The heartbeat overhead, however, was unexpectedly long,

due to a design decision (and limitation of RPC) to have

the head node check the statuses of the index nodes at the

beginning of each PUT or QUERY transaction. In hindsight,

the work should have been done in reverse order, in which

we task the index nodes to periodically message the head

node. This decentralizes burden away from the head node,

and allows it to conduct more time-critical tasks. The heartbeat

mechanism will be fixed in future work.

Another future work topic involves distributed query opti-

mization. For instance, there are opportunities to short-circuit a

(sub)query that performs ORs over bit-vectors, but has obtained

a partial bit-vector that is entirely 0s. Conversely, this idea can

be extended to ANDs over bit-vectors with partial results of

0s. Furthermore, we can improve the O(r log n) performance

given by consistent hashing by using dynamic partitioning of

the bitmap vectors, as described in [25].
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